Ultrafast Optoelectronic Nanoscopy of Biological and Optoelectronic Systems

生物和光电系统的超快光电纳米显微镜

基本信息

  • 批准号:
    EP/V049070/1
  • 负责人:
  • 金额:
    $ 24.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the greatest challenges in modern nanotechnology is the ability to characterise individual molecules and molecular assemblies with high spatial and temporal resolution. A technology possessing these capabilities will have a broad range of applications in next-generation molecular electronics, and will help to solve major existing healthcare challenges, from early-stage biomarker detection to protein sequencing.In the last decade, a variety of new methods emerged that tried to combine ultrafast optical tools with electronic sensors. The developed expertise brings us a unique opportunity to start a completely new type of experimental research - addressing individulal molecules and resolving their dynamics on all relevant timescales, from ps to ms and beyond.In the proposed project, we aim to bring together cutting-edge developments in the fields of ultrafast spectroscopy and single-molecule tunnelling detection. We will develop a new experimental platform for the characterisation of molecular-scale objects, utilising nanodimensional electrical probes in concert with ultrafast optical methods. This combination will result in a robust and versatile new technique, Ultrafast Optoelectronic Nanoscopy (UON). UON's potential to overcome the limitations of scanning probe methods and to access the real-time evolution of molecular systems will be demonstrated by applying it to biological macromolecules and plastic semiconductor devices.
现代纳米技术面临的最大挑战之一是具有高空间和时间分辨率表征单个分子和分子组合的能力。拥有这些能力的技术将在下一代分子电子学中有广泛的应用,并将有助于解决现有的主要医疗保健挑战,从早期生物标志物检测到蛋白质测序。在过去的十年中,出现了各种各样的新方法,试图将超快光学工具与电子传感器结合起来。先进的专业技术为我们提供了一个独特的机会,可以开始一种全新的实验研究——解决单个分子的问题,并在所有相关的时间尺度上解决它们的动力学问题,从ps到ms甚至更高。在提议的项目中,我们的目标是将超快光谱和单分子隧道探测领域的前沿发展结合起来。我们将开发一个新的实验平台,用于分子尺度物体的表征,利用纳米级电探针与超快光学方法相结合。这种结合将产生一种强大而通用的新技术,超快光电纳米技术(UON)。UON在克服扫描探针方法的局限性和获取分子系统实时演化方面的潜力将通过将其应用于生物大分子和塑料半导体器件而得到证明。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring conductance switching in single proteins using quantum tunneling.
使用量子隧道测量单个蛋白质的电导开关
  • DOI:
    10.1126/sciadv.abm8149
  • 发表时间:
    2022-05-20
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Tang, Longhua;Yi, Long;Jiang, Tao;Ren, Ren;Nadappuram, Binoy Paulose;Zhang, Bintian;Wu, Jian;Liu, Xu;Lindsay, Stuart;Edel, Joshua B.;Ivanov, Aleksandar P.
  • 通讯作者:
    Ivanov, Aleksandar P.
Selective Single-Molecule Nanopore Detection of mpox A29 Protein Directly in Biofluids.
  • DOI:
    10.1021/acs.nanolett.3c02709
  • 发表时间:
    2023-12-27
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Cai, Shenglin;Ren, Ren;He, Jiaxuan;Wang, Xiaoyi;Zhang, Zheng;Luo, Zhaofeng;Tan, Weihong;Korchev, Yuri;Edel, Joshua B.;Ivanov, Aleksandar P.
  • 通讯作者:
    Ivanov, Aleksandar P.
Fabrication of electron tunneling probes for measuring single-protein conductance
  • DOI:
    10.1038/s41596-023-00846-3
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Tao Jiang;Long Yi;Xu Liu;A. Ivanov;J. Edel;Long-Jun Tang
  • 通讯作者:
    Tao Jiang;Long Yi;Xu Liu;A. Ivanov;J. Edel;Long-Jun Tang
Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates
  • DOI:
    10.1002/adma.202103067
  • 发表时间:
    2021-07-29
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Ren, Ren;Sun, Maozhong;Edel, Joshua B.
  • 通讯作者:
    Edel, Joshua B.
Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes
  • DOI:
    10.1007/s12274-022-4535-8
  • 发表时间:
    2022-06-25
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Fried,Jasper P.;Swett,Jacob L.;Mol,Jan A.
  • 通讯作者:
    Mol,Jan A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Artem Bakulin其他文献

The Synthesis of a Multiple D‐A Conjugated Macrocycle and Its Application in Organic Photovoltaic
  • DOI:
    10.1002/anie.202311645
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Wei Liu;Huotian Zhang;Songting Liang;Tong Wang;Siqing He;Yunbin Hu;Rui Zhang;Haoqing Ning;Jie Ren;Artem Bakulin;Feng Gao;Jun Yuan;Yingping Zou
  • 通讯作者:
    Yingping Zou

Artem Bakulin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Artem Bakulin', 18)}}的其他基金

Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Correlation Between Charge Carrier Dynamics and Device Properties in Working Quasi-Two-Dimensional Perovskite Light-Emitting Diodes
准二维钙钛矿发光二极管中电荷载流子动力学与器件特性之间的相关性
  • 批准号:
    EP/X027465/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Fellowship

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Discovery Projects
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Continuing Grant
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Discovery Early Career Researcher Award
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Standard Grant
Deposition of novel transparent conducting thin films with unusual optoelectronic properties
具有不寻常光电特性的新型透明导电薄膜的沉积
  • 批准号:
    2888596
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Studentship
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了