Cardiac electrophysiology through 3-Photon Optical technology

通过 3 光子光学技术进行心脏电生理学

基本信息

  • 批准号:
    EP/V051148/1
  • 负责人:
  • 金额:
    $ 44.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Millions of people are affected by the appearance of abnormal heartbeats, or arrhythmias- a group of conditions in which the heart beats irregularly, too fast or too slow. Arrhythmias arising in the large chambers of the heart, the ventricles, may lead to life-threatening ventricular fibrillation, an uncontrolled flutter rather than coordinated pumping or cardiac arrest. Advances in understanding the precise conditions which promote the formation of arrhythmias will be vital to the development of novel treatment strategies for at-risk patients. A key concept of cardiac function is the communication of cardiomyocytes, the excitable muscle cells of the heart, via electrical signalling impulses called action potentials. Cardiac muscle cells need to act synchronously to an initiating impulse spreading in a coordinated manner to allow blood to be efficiently pumped around the body with each beat. Conversely, when the electrical conduction between cardiomyocytes is not working properly, cardiomyocytes stop working together in a coordinated way and corresponding pumping of the entire heart at a healthy rate breaks down. Therefore, to understand the formation of arrhythmias we need understanding of the cellular electrophysiology of heart cells within their native surrounding structural environment. Since cardiac function and structure are intricately related, optical approaches are well-suited for these investigations because they are non-invasive. Using fluorescent dyes which change their light emission depending on the electrical state of the cardiomyocyte, optical microscopy techniques allow us to investigate cardiac electrical conduction with light. In this research programme, I propose to develop novel optical techniques based on 3-photon microscopy to investigate electrical activity deep within the ventricle wall beyond the reach of what is feasible with the current state of the art.
数以百万计的人受到异常心跳或心律失常的影响-这是一组心脏跳动不规则,过快或过慢的情况。在心脏的大腔室(心室)中出现的心律失常可能导致危及生命的心室颤动,这是一种不受控制的扑动,而不是协调的泵送或心脏骤停。在了解促进心律失常形成的确切条件方面的进展对于为高危患者开发新的治疗策略至关重要。心脏功能的一个关键概念是心肌细胞(心脏的可兴奋肌肉细胞)通过称为动作电位的电信号脉冲进行通信。心肌细胞需要与以协调的方式传播的起始脉冲同步动作,以允许血液在每次跳动时有效地泵送到身体周围。相反,当心肌细胞之间的电传导不能正常工作时,心肌细胞就会停止以协调的方式一起工作,整个心脏以健康的速度进行的相应泵送就会中断。因此,为了理解心律失常的形成,我们需要了解心脏细胞在其天然周围结构环境中的细胞电生理学。由于心脏功能和结构是错综复杂的,光学方法非常适合这些调查,因为他们是非侵入性的。使用荧光染料,改变其光发射取决于心肌细胞的电状态,光学显微镜技术使我们能够研究心脏电传导与光。在这项研究计划中,我建议开发基于3光子显微镜的新型光学技术,以研究心室壁深处的电活动,这超出了目前最先进技术的可行范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marie Muellenbroich其他文献

Marie Muellenbroich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marie Muellenbroich', 18)}}的其他基金

Novel optical technology for cardiac electrophysiology 2023 workshop (NOTICE Workshop 2023)
2023年心脏电生理学新型光学技术研讨会(NOTICE Workshop 2023)
  • 批准号:
    EP/X037843/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
    Research Grant
Novel optical technology for cardiac electrophysiology 2020 workshop
2020年心脏电生理学新型光学技术研讨会
  • 批准号:
    EP/V001981/1
  • 财政年份:
    2020
  • 资助金额:
    $ 44.57万
  • 项目类别:
    Research Grant

相似海外基金

Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
  • 批准号:
    10664507
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
Cognitive enhancement through model-based and individualized neurostimulation
通过基于模型的个性化神经刺激增强认知
  • 批准号:
    10608715
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
The role of wake-associated protein kinase A transients in intrinsic plasticity and learning through aging
唤醒相关蛋白激酶 A 瞬变在内在可塑性和衰老学习中的作用
  • 批准号:
    10751540
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
Music mechanisms and technologies network: Integrative models to address pain through music
音乐机制和技术网络:通过音乐解决疼痛的综合模型
  • 批准号:
    10765327
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
Targeting methylglyoxal-induced diabetic neuropathic pain through the integrated stress response
通过综合应激反应针对甲基乙二醛诱发的糖尿病神经性疼痛
  • 批准号:
    10567294
  • 财政年份:
    2023
  • 资助金额:
    $ 44.57万
  • 项目类别:
Transforming hearing aids through large-scale electrophysiology and deep learning
通过大规模电生理学和深度学习改变助听器
  • 批准号:
    EP/W004275/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.57万
  • 项目类别:
    Research Grant
Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
  • 批准号:
    10446655
  • 财政年份:
    2022
  • 资助金额:
    $ 44.57万
  • 项目类别:
Determining whether TMS changes the brain through brain synaptic plasticity
确定 TMS 是否通过大脑突触可塑性改变大脑
  • 批准号:
    10545460
  • 财政年份:
    2022
  • 资助金额:
    $ 44.57万
  • 项目类别:
Inhibition of MMP-9 Activity Impairs Working Memory in Zebrafish Through Changes in Overall Hippocampal Excitation
MMP-9 活性的抑制通过整体海马兴奋的变化损害斑马鱼的工作记忆
  • 批准号:
    10610054
  • 财政年份:
    2022
  • 资助金额:
    $ 44.57万
  • 项目类别:
Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
  • 批准号:
    10665027
  • 财政年份:
    2022
  • 资助金额:
    $ 44.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了