New directions in high temperature dielectrics: unlocking performance of doped tungsten bronze oxides through mechanistic understanding

高温电介质的新方向:通过机理理解解锁掺杂钨青铜氧化物的性能

基本信息

  • 批准号:
    EP/V053361/1
  • 负责人:
  • 金额:
    $ 55.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

New higher temperature, high-voltage multilayer ceramic capacitors (MLCCs) are required to advance power electronics - an important technology in the energy transition to net zero CO2 emissions by 2050. Wide-bandgap semiconductor technologies for power electronic equipment already provide active components that can operate at 250-300C, allowing reductions in heatsink size and equipment weight. However due to the high switching speeds of wide-bandgap devices, passive and active components must be in close proximity, demanding high temperature operation of the (passive) capacitors. In addition to applications in renewable energy distribution, there are demands for higher temperature capacitors in transport electrification where electronic equipment needs to operate at high ambient temperatures. Unfortunately existing Class II capacitors, which are all based on the perovskite crystal structure, can only operate to 125-175 C. Global research into new higher temperature capacitor materials over the past decade has failed to produce any dielectric material suitable for mass market MLCCs, now manufactured using inexpensive nickel metal internal electrodes. The obstacle has been the presence of bismuth or lead oxide in the ceramic formulation. This would cause the dielectric materials and electrodes to degrade in the high temperature, chemically reducing atmospheres used to manufacture modern MLCCs. In a shift of research direction, we have recently obtained proof-of-principle that a new type of dielectric based on the tungsten bronze crystal structure offers uniformly high permittivity (>1300 +/- 15%) over the requisite -55 to 300 C temperature range. The material is based on strontium sodium niobate (SNN) co-doped with only 1-2.5 at.% calcium, yttrium and zirconium. Although promising, the dielectric properties fall short of the exceptional performance levels required of a next generation capacitor material. For example, dielectric losses (currently 4%) exceed industrial specifications (2.5%). Unlocking the true potential of the new tungsten bronze approach is severely hindered by a lack of knowledge as to underpinning mechanisms. For example, why low levels of dopants create extremely diffuse twin temperature-dependent dielectric anomalies. In preliminary work we have demonstrated that composition-structure-property relationships for existing temperature stable dielectrics based on titanate perovskites do not apply to this new type of high-temperature dielectric. We propose to unlock the true potential of tungsten bronzes by application of new scientific understanding to overcome existing limitations. We will discover how to raise permittivity and reduce dielectric losses in doped SNN ceramics across the challenging temperature range -55 to 300 C by studying how structure (crystal, nano, micro, defect) is modified by specific dopant systems, using a combination of: electron, neutron and synchrotron diffraction; atom column resolution electron microscopy; electrochemical impedance spectroscopy. First principles simulations will also assist us in interpreting experimental findings and developing structure-property models. From this framework of understanding, new compositions will be designed. Final materials selection criteria will include a range of other dielectric parameters, including dielectric breakdown strength and energy storage density. Our capacitor industry partner KEMET will help evaluate materials and conduct highly accelerated lifetime testing. The best material will be demonstrated within the project in a wide-bandgap switching cell with integrated high-voltage DC-link MLCCs. Alongside direct engagement with established company collaborations, wider benefits will be maximized by developing new activities with industry. This will be achieved in part using the resources of the University of Leeds's Research and Innovation Service, and the new Innovation and Enterprise Centre, Nexus.
需要新的更高温度、高压多层陶瓷电容器(MLCC)来推进电力电子技术的发展-这是到2050年实现能源转型到净零二氧化碳排放的重要技术。用于电力电子设备的宽带隙半导体技术已经提供了可以在250- 300 ℃下工作的有源元件,从而可以减小器件尺寸和设备重量。然而,由于宽带隙器件的高开关速度,无源和有源元件必须非常接近,要求(无源)电容器在高温下工作。除了在可再生能源分配中的应用外,在运输电气化中也需要更高温度的电容器,其中电子设备需要在高环境温度下工作。不幸的是,现有的II类电容器都基于钙钛矿晶体结构,只能在125-175 C下工作。在过去十年中,全球对新型高温电容器材料的研究未能生产出任何适用于大众市场MLCC的介电材料,现在使用廉价的镍金属内部电极制造。障碍是陶瓷配方中存在铋或铅的氧化物。这将导致电介质材料和电极在用于制造现代MLCC的高温化学还原气氛中降解。随着研究方向的转变,我们最近获得了原理证明,即基于钨青铜晶体结构的新型电介质在所需的-55至300 C温度范围内提供均匀的高介电常数(>1300 +/- 15%)。该材料基于共掺杂仅1- 2.5at.%的钛酸锶钠(SNN),钙、钇和锆。虽然有希望,但介电性能达不到下一代电容器材料所需的卓越性能水平。例如,介电损耗(目前为4%)超过了工业规格(2.5%)。由于缺乏对支撑机制的了解,新钨青铜方法的真正潜力受到严重阻碍。例如,为什么低水平的掺杂剂会产生极度扩散的孪生温度依赖性介电异常。在初步工作中,我们已经证明,现有的温度稳定的钛酸钙钛矿为基础的复合材料的组成-结构-性能的关系不适用于这种新型的高温电介质。我们建议通过应用新的科学认识来克服现有的局限性,从而释放钨青铜的真正潜力。我们将发现如何提高介电常数和降低介电损耗的掺杂SNN陶瓷在整个具有挑战性的温度范围-55至300 C通过研究结构(晶体,纳米,微米,缺陷)是如何修改特定的掺杂剂系统,使用的组合:电子,中子和同步加速器衍射;原子柱分辨电子显微镜;电化学阻抗谱。第一性原理模拟也将帮助我们解释实验结果和开发结构-性质模型。从这个理解的框架,新的组成将被设计。最终材料选择标准将包括一系列其他介电参数,包括介电击穿强度和能量存储密度。我们的电容器行业合作伙伴KEMET将帮助评估材料并进行高加速寿命测试。最好的材料将在该项目中展示,用于集成高压直流链路MLCC的宽带隙开关单元。除了直接与已建立的公司合作外,还将通过与行业开展新的活动来最大限度地扩大更广泛的利益。这将部分利用利兹大学的研究和创新服务以及新的创新和企业中心Nexus的资源来实现。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure and dielectric properties of yttrium-doped Ca0.28Ba0.72Nb2O6 ceramics
钇掺杂Ca0.28Ba0.72Nb2O6陶瓷的结构和介电性能
Structural investigation of the temperature-stable relaxor dielectric Ba0.8Ca0.2TiO3-Bi(Mg0.5Ti0.5)O3
  • DOI:
    10.1016/j.jeurceramsoc.2022.09.039
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    M. Cabral;A. Brown;J. Bultitude;A. Britton;R. Brydson;T. Roncal-Herrero;D. Hall;S. J. Milne;A. Rappe;D. Sinclair;J. Zhang;Y. Li
  • 通讯作者:
    M. Cabral;A. Brown;J. Bultitude;A. Britton;R. Brydson;T. Roncal-Herrero;D. Hall;S. J. Milne;A. Rappe;D. Sinclair;J. Zhang;Y. Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Brown其他文献

Parallel Computing is Everywhere
并行计算无处不在
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Brown
  • 通讯作者:
    Andrew Brown
The Sexual Workshop: A Technology and Phenomenology of Internet Porn
性工作坊:网络色情的技术和现象学
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Brown
  • 通讯作者:
    Andrew Brown
Antioxidant and Anti-Aging Potential of Indian Sandalwood Oil against Environmental Stressors In Vitro and Ex Vivo
印度檀香油对体外和离体环境压力的抗氧化和抗衰老潜力
  • DOI:
    10.3390/cosmetics8020053
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Véronique François;Andrew Brown;P. Andres;Madiiha Bibi Mandary;Carli Weyers;Mélissa Latouche;D. Hettiarachchi
  • 通讯作者:
    D. Hettiarachchi
Improved Decoding of Interleaved AG Codes
改进的交错 AG 代码解码
  • DOI:
    10.1007/11586821_3
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Brown;L. Minder;A. Shokrollahi
  • 通讯作者:
    A. Shokrollahi
Probabilistic decoding of interleaved RS-codes on the q-ary symmetric channel
q 元对称信道上交错 RS 码的概率解码

Andrew Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Brown', 18)}}的其他基金

SCISIPBIO: Maximizing the Value of Sex-Inclusive Research Policies through Analytical Rigor
SCISIPBIO:通过严谨的分析最大限度地发挥性别包容性研究政策的价值
  • 批准号:
    2318478
  • 财政年份:
    2023
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
PARAMOR- Platform And Resource for Atomic, Molecular and Optical Research
PARAMOR-原子、分子和光学研究的平台和资源
  • 批准号:
    EP/V05208X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Fellowship
AQuA DIP: Advanced Quantum Approaches to Double Ionisation Processes
AQuA DIP:双电离过程的先进量子方法
  • 批准号:
    EP/T019530/1
  • 财政年份:
    2020
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
The Leeds EPSRC Nanoscience and Nanoequipment User Facility
利兹 EPSRC 纳米科学和纳米设备用户设施
  • 批准号:
    EP/R02863X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Event-based parallel computing - partially ordered event-triggered systems (POETS)
基于事件的并行计算 - 部分有序事件触发系统(POETS)
  • 批准号:
    EP/N031768/1
  • 财政年份:
    2016
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Nanoparticle Cytometrics: a quantitative analysis of the toxic effect of nanoparticles
纳米颗粒细胞计数:纳米颗粒毒性作用的定量分析
  • 批准号:
    EP/H008578/1
  • 财政年份:
    2010
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Biologically-Inspired Massively Parallel Architectures - computing beyond a million processors
受生物启发的大规模并行架构 - 计算能力超过一百万个处理器
  • 批准号:
    EP/G015775/1
  • 财政年份:
    2010
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Civic ceremony and religion in Bruges 1300-1520
布鲁日的公民仪式和宗教 1300-1520 年
  • 批准号:
    AH/E504183/1
  • 财政年份:
    2007
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Characterisation of Nano-Particulates in Natural Systems
自然系统中纳米颗粒的表征
  • 批准号:
    EP/E059678/1
  • 财政年份:
    2007
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Fellowship
Network : Developing a Common Vision for UK research in Microelectronic Design.
网络:为英国微电子设计研究制定共同愿景。
  • 批准号:
    EP/D054028/1
  • 财政年份:
    2006
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 55.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了