Advanced Optical Frequency Comb Technologies and Applications

先进光频梳技术及应用

基本信息

  • 批准号:
    EP/W002868/1
  • 负责人:
  • 金额:
    $ 219.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Technologies underpin economic and industrial advances and improvements in healthcare, education and societal and public infrastructure. Technologies of the future depend on scientific breakthroughs of the past and present, including new knowledge bases, ideas, and concepts. The proposed international network of interdisciplinary centre-to-centre collaborations aims to drive scientific and technological progress by advancing and developing a new science platform for emerging technology - the optical frequency comb (OFC) with a range of practical applications of high industrial and societal importance in telecommunications, metrology, healthcare, environmental applications, bio-medicine, food industry and agri-tech and many other applications.The optical frequency comb is a breakthrough photonic technology that has already revolutionised a range of scientific and industrial fields. In the family of OFC technologies, dual-comb spectroscopy plays a unique role as the most advanced platform combining the strengths of conventional spectroscopy and laser spectroscopy. Measurement techniques relying on multi-comb, mostly dual-comb and very recently tri-combs, offer the promise of exquisite accuracy and speed. The large majority of initial laboratory results originate from cavity-based approaches either using bulky powerful Ti:Sapphire lasers, or ultra-compact micro-resonators. While these technologies have many advantages, they also feature certain drawbacks for some applications. They require complex electronic active stabilisation schemes to phase-lock the different single-combs together, and the characteristics of the multi-comb source are not tuneable since they are severely dictated by the opto-geometrical parameters of the cavity. Thus, their repetition rates cannot be optimised to the decay rates of targeted samples, nor their relative repetition rates to sample the response of the medium. Such lack of versatility leads to speed and resolution limitations. These major constraints impact the development of these promising systems and make difficult their deployment outside the labs. To drive OFC sources, and in particular, multi-comb source towards a tangible science-to-technology breakthrough, the current state of the art shows that a fundamental paradigm shift is required to achieve the needs of robustness, performance and versatility in repetition rates and/or comb optical characteristics as dictated by the diversity of applications. In this project we propose and explore new approaches to create flexible and tunable comb sources, based on original design concepts. The novelty and transformative nature of our programme is in addressing engineering challenges and designs treating nonlinearity as an inherent part of the engineering systems rather than as a foe. Using the unique opportunity provided by the EPSRC international research collaboration programme, this project will bring together a critical mass of academic and industrial partners with complimentary expertise ranging from nonlinear mathematics to industrial engineering to develop new concepts and ideas underpinning emerging and future OFC technologies. The project will enhance UK capabilities in key strategic areas including optical communications, laser technology, metrology, and sensing, including the mid-IR spectral region, highly important for healthcare and environment applications, food, agri-tech and bio-medical applications. Such a wide-ranging and transformative project requires collaborative efforts of academic and industrial groups with complimentary expertise across these fields. There are currently no other UK projects addressing similar research challenges. Therefore, we believe that this project will make an important contribution to UK standing in this field of high scientific and industrial importance.
技术支撑着经济和工业的进步,以及医疗保健、教育、社会和公共基础设施的改善。未来的技术依赖于过去和现在的科学突破,包括新的知识基础、思想和概念。拟议的跨学科中心对中心合作国际网络旨在通过推进和开发新兴技术的新科学平台--光频梳(OFC),推动科学和技术进步,该平台在电信、计量、医疗保健、环境应用、生物医学、光频梳是一种突破性的光子技术,已经彻底改变了一系列科学和工业领域。在OFC技术家族中,双梳光谱作为结合了传统光谱和激光光谱优势的最先进平台发挥着独特的作用。测量技术依赖于多梳,主要是双梳和最近的三梳,提供了精湛的精度和速度的承诺。绝大多数最初的实验室结果来自基于腔的方法,无论是使用庞大的强大的钛:蓝宝石激光器,或超紧凑的微谐振器。虽然这些技术具有许多优点,但它们在某些应用中也具有某些缺点。它们需要复杂的电子有源稳定方案来将不同的单梳锁相在一起,并且多梳源的特性是不可调谐的,因为它们严格地由腔的光学几何参数决定。因此,它们的重复率不能针对目标样品的衰减率进行优化,也不能针对介质的响应进行采样的相对重复率进行优化。这种通用性的缺乏导致速度和分辨率的限制。这些主要的限制影响了这些有前途的系统的开发,并使其难以在实验室外部署。为了驱动OFC源,特别是多梳状源朝向切实的科学技术突破,本领域的当前状态表明,需要基本的范式转变来实现如由应用的多样性所指示的重复率和/或梳状光学特性的鲁棒性、性能和多功能性的需求。在这个项目中,我们提出并探索基于原始设计概念创建灵活且可调的梳状光源的新方法。我们计划的新奇和变革性在于解决工程挑战和设计,将非线性视为工程系统的固有部分,而不是敌人。利用EPSRC国际研究合作计划提供的独特机会,该项目将汇集大量学术和工业合作伙伴,他们具有从非线性数学到工业工程的互补专业知识,以开发支持新兴和未来OFC技术的新概念和想法。该项目将增强英国在关键战略领域的能力,包括光通信、激光技术、计量和传感,包括对医疗保健和环境应用、食品、农业技术和生物医学应用非常重要的中红外光谱区域。这样一个范围广泛和变革性的项目需要学术和工业团体的合作努力,并在这些领域提供互补的专业知识。目前英国还没有其他项目解决类似的研究挑战。因此,我们相信该项目将为英国在这一具有高度科学和工业重要性的领域中的地位做出重要贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of pump pulse duration on modulation instability Kerr frequency combs in fiber Fabry-Pérot resonators.
泵浦脉冲持续时间对光纤法布里-珀罗谐振器中克尔频率梳调制不稳定性的影响。
  • DOI:
    10.1364/ol.506100
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Bunel T
  • 通讯作者:
    Bunel T
Tunable Polarization-Multiplexed Single-Cavity Dual-Comb.
Enhanced THz Generation From Interdigitated Quantum Dot Based Photoconductive Antenna Operating in a Quasi-Ballistic Regime
在准弹道状态下运行的基于叉指量子点的光电导天线增强了太赫兹的产生
Intra-envelope four-wave mixing in optical fibers.
光纤中的包络内四波混频。
  • DOI:
    10.1364/oe.501616
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Bancel EL
  • 通讯作者:
    Bancel EL
Polarization dynamics, stability and tunability of a dual-comb polarization-multiplexing ring-cavity fiber laser
  • DOI:
    10.1016/j.rinp.2023.106260
  • 发表时间:
    2023-02-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Cuevas, Alberto Rodriguez;Kbashi, Hani J.;Sergeyev, Sergey
  • 通讯作者:
    Sergeyev, Sergey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Turitsyn其他文献

Experimental observation of multi-scale spatio-temporal structures with dark solitons embedded in a dissipative soliton
具有嵌入耗散孤子的多尺度时空结构的实验观察
  • DOI:
    10.1016/j.chaos.2024.115968
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Dian Duan;Sergei Turitsyn;Xuewen Shu
  • 通讯作者:
    Xuewen Shu

Sergei Turitsyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Turitsyn', 18)}}的其他基金

Next generation hworigh-speed optical netks for metro access
用于城域接入的下一代高速光纤网络
  • 批准号:
    EP/Y031024/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant
Application of Nonlinear Integrable Systems to Optical Data Processing, Transmission and Detection.
非线性可积系统在光学数据处理、传输和检测中的应用。
  • 批准号:
    EP/D050812/1
  • 财政年份:
    2006
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Continuing Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: Chip-Scale Optical Frequency Standards
SBIR 第二阶段:芯片级光频率标准
  • 批准号:
    2322392
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Cooperative Agreement
Broadband background canceling using optical frequency comb and application
利用光学频率梳消除宽带背景及应用
  • 批准号:
    23H01875
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optical fiber rangefinder dynamically updating resolution and dynamic range by optical frequency modulation
光纤测距仪通过光学频率调制动态更新分辨率和动态范围
  • 批准号:
    23K13342
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004856/1
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant
CAREER: Optical-frequency electronics for measuring the fields of light guided on chips
职业:用于测量芯片上光导场的光频电子器件
  • 批准号:
    2238575
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Continuing Grant
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
  • 批准号:
    DE230100964
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Discovery Early Career Researcher Award
Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004740/1
  • 财政年份:
    2023
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了