Application of Nonlinear Integrable Systems to Optical Data Processing, Transmission and Detection.
非线性可积系统在光学数据处理、传输和检测中的应用。
基本信息
- 批准号:EP/D050812/1
- 负责人:
- 金额:$ 20.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present application is for the three-year support of one research associate to undertake theoretical research on fundamentally new nonlinear technologies in optical signal processing and detection based on remarkable properties of the so-called integrable nonlinear systems that we plan to practically implement in optical fibre waveguides. Current optical communication systems use binary modulation and transmission/coding schemes matched to binary modulation. As optical fibre systems rapidly approach the limits of binary modulation and direct detection, alternative optical data coding, processing, transmission and detection techniques will play increasing roles in a more efficient use of a fibre's information capacity. The project will take advantage of the existing experimental and theoretical research being performed in the Photonics Research Group. Though the fundamentally new approaches will be addressed, the practical engineering design considerations will be an important part of the proposed research. We believe that the proposed multidisciplinary research programme based on a synergy of methods from very different fields of science, has a right balance between an adventure and the research quality to make an important contribution into development of future generation of communication networks, systems and devices operating beyond the limits of current systems and increasing information data-rates by orders of magnitude.
目前的申请是一个研究助理进行理论研究的基础上,我们计划在光纤波导中实际实施的所谓的可积非线性系统的显着性能的光学信号处理和检测的全新的非线性技术的三年的支持。当前的光通信系统使用二进制调制和与二进制调制匹配的传输/编码方案。随着光纤系统迅速接近二进制调制和直接检测的极限,替代的光学数据编码、处理、传输和检测技术将在更有效地利用光纤的信息容量方面发挥越来越大的作用。该项目将利用光子学研究小组正在进行的现有实验和理论研究。虽然从根本上讲,新的方法将得到解决,实际的工程设计考虑将是拟议的研究的重要组成部分。我们相信,基于来自不同科学领域的方法的协同作用,拟议的多学科研究计划在冒险和研究质量之间取得了适当的平衡,为未来一代通信网络,系统和设备的发展做出了重要贡献,这些网络,系统和设备超出了当前系统的限制,并以数量级增加了信息数据速率。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous spatial and spectral transparency in ultralong fiber lasers
- DOI:10.1103/physrevlett.101.123903
- 发表时间:2008-09-19
- 期刊:
- 影响因子:8.6
- 作者:Ania-Castanon, J. D.;Karalekas, V.;Turitsyn, S. K.
- 通讯作者:Turitsyn, S. K.
Doubling of optical signals using triangular pulses
- DOI:10.1364/josab.26.001492
- 发表时间:2009-08-01
- 期刊:
- 影响因子:1.9
- 作者:Latkin, Anton I.;Boscolo, Sonia;Turitsyn, Sergei K.
- 通讯作者:Turitsyn, Sergei K.
Theory of parabolic pulse generation in tapered fiber.
- DOI:10.1364/ol.32.000331
- 发表时间:2007-02
- 期刊:
- 影响因子:3.6
- 作者:A. Latkin;S. Turitsyn;A. Sysoliatin
- 通讯作者:A. Latkin;S. Turitsyn;A. Sysoliatin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergei Turitsyn其他文献
Experimental observation of multi-scale spatio-temporal structures with dark solitons embedded in a dissipative soliton
具有嵌入耗散孤子的多尺度时空结构的实验观察
- DOI:
10.1016/j.chaos.2024.115968 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:5.600
- 作者:
Dian Duan;Sergei Turitsyn;Xuewen Shu - 通讯作者:
Xuewen Shu
Sergei Turitsyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergei Turitsyn', 18)}}的其他基金
Next generation hworigh-speed optical netks for metro access
用于城域接入的下一代高速光纤网络
- 批准号:
EP/Y031024/1 - 财政年份:2024
- 资助金额:
$ 20.84万 - 项目类别:
Research Grant
Advanced Optical Frequency Comb Technologies and Applications
先进光频梳技术及应用
- 批准号:
EP/W002868/1 - 财政年份:2022
- 资助金额:
$ 20.84万 - 项目类别:
Research Grant
相似海外基金
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2022
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual
Novel Challenges in Nonlinear Waves and Integrable Systems
非线性波和可积系统的新挑战
- 批准号:
2106488 - 财政年份:2021
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Nonlinear integrable systems and representation theory -revisited-
非线性可积系统和表示论-重温-
- 批准号:
21K03208 - 财政年份:2021
- 资助金额:
$ 20.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2021
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2020
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2019
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
- 批准号:
EP/R00515X/2 - 财政年份:2018
- 资助金额:
$ 20.84万 - 项目类别:
Research Grant
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
- 批准号:
RGPIN-2014-05358 - 财政年份:2018
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual
Development of computational algorithms for nonlinear wave analysis based on discrete methods for integrable systems
基于可积系统离散方法的非线性波分析计算算法的开发
- 批准号:
18K03435 - 财政年份:2018
- 资助金额:
$ 20.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
- 批准号:
RGPIN-2014-05358 - 财政年份:2017
- 资助金额:
$ 20.84万 - 项目类别:
Discovery Grants Program - Individual