A divide and conquer attack on challenging least squares problems

针对具有挑战性的最小二乘问题的分而治之攻击

基本信息

  • 批准号:
    EP/W009676/1
  • 负责人:
  • 金额:
    $ 7.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

his project seeks to solve challenging large-scale linear least squares problems that arise in science, engineering, planning and economics. Least squares involves finding an approximate solution of overdetermined or inexactly specified systems of equations. Real-life applications abound. Weather forecasters want to produce more accurate forecasts; climatologists want a better understanding of climate change; medics want to produce more accurate images in real time; financiers want to analyse and quantify the systematic risk of an investment by fitting a capital asset pricing model to observed financial data. Finding the 'best' solution commonly involves constructing a mathematical model to describe the problem and then fitting this model to observed data. Such models are usually complicated; models with millions of variables and restrictions are not uncommon, but neither are relatively small but fiendishly difficult ones. It is therefore imperative to implement the model on a computer and to use computer algorithms for solving it. The latter task is at the core of the proposed activities.Nearly all such large-scale problems are sparse. That is to say, the interactions between the parameters of a large system are localised and involve limited direct interactions between all the components. To solve the systems and models represented in this way efficiently involves developing algorithms that are able to exploit these underlying 'simpler' structures, thus reducing the scale of the problems, allowing the use of parallelism and speeding up their solution on modern computer architectures. Our focus will be on iterative methods, which are commonly the only possible class of methods that can be used to tackle very large problems. However, to obtain a solution in an acceptable number of steps, it is generally necessary to transform the given system to another one that has the same solution but is simpler to solve. This is called preconditioning. The choice of preconditioner is problem dependent and for least squares problem there are currently few options available. Thus, we seek to develop a class of novel preconditioners that are highly efficient and robust when applied to large-scale least squares problems. We will develop new algorithms and underlying theory and, very importantly, we will implement these algorithms in high quality software that will be made available through our internationally renowned mathematical software library HSL. This is extensively used by the scientific and engineering research community in the UK and abroad, as well as by some commercial companies. The software will also be incorporated in the widely-used PETSc suite of packages for scalable computation.
他的项目旨在解决科学,工程,规划和经济学中出现的具有挑战性的大规模线性最小二乘问题。最小二乘法涉及到求超定或不精确指定的方程组的近似解。现实生活中的应用比比皆是。天气预报员希望做出更准确的预报;气候学家希望更好地了解气候变化;医务人员希望在真实的时间内制作更准确的图像;金融家希望通过将资本资产定价模型与观察到的金融数据相拟合来分析和量化投资的系统性风险。寻找“最佳”解决方案通常涉及构建一个数学模型来描述问题,然后将该模型与观察到的数据进行拟合。这类模型通常都很复杂,包含数百万个变量和限制的模型并不少见,但也不是相对较小但极其困难的模型。因此,必须在计算机上实现这一模型,并使用计算机算法来解决这一问题,后一项任务是拟议活动的核心,几乎所有这类大规模问题都是稀疏的。也就是说,大系统的参数之间的相互作用是局部的,并且涉及所有组件之间有限的直接相互作用。为了有效地解决以这种方式表示的系统和模型,需要开发能够利用这些底层“更简单”结构的算法,从而减少问题的规模,允许使用并行性并加快现代计算机架构的解决方案。我们的重点将放在迭代方法,这通常是唯一可能的方法,可用于解决非常大的问题。然而,为了在可接受的步骤中获得解,通常需要将给定系统转换为具有相同解但更容易求解的另一个系统。这被称为预处理。预条件的选择是问题依赖性的,对于最小二乘问题,目前几乎没有可用的选项。因此,我们寻求开发一类新的预条件,是高效和强大的应用于大规模的最小二乘问题。我们将开发新的算法和基础理论,非常重要的是,我们将在高质量的软件中实现这些算法,这些软件将通过我们国际知名的数学软件库HSL提供。这是广泛使用的科学和工程研究界在英国和国外,以及一些商业公司。该软件还将被纳入广泛使用的PETSc套件中,以进行可扩展的计算。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solving large linear least squares problems with linear equality constraints
  • DOI:
    10.1007/s10543-022-00930-2
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    J. Scott;M. Tuma
  • 通讯作者:
    J. Scott;M. Tuma
A Robust Algebraic Multilevel Domain Decomposition Preconditioner for Sparse Symmetric Positive Definite Matrices
稀疏对称正定矩阵的鲁棒代数多级域分解预处理器
A Robust Algebraic Domain Decomposition Preconditioner for Sparse Normal Equations
稀疏正规方程的鲁棒代数域分解预条件子
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Scott其他文献

Training Self Explanation and Reading Strategies
训练自我解释和阅读策略
professionals’ views regarding the future of NHS patient medicines
专业人士对 NHS 患者药物未来的看法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Williams;A. Jordan;Jennifer Scott;Matthew D. Jones
  • 通讯作者:
    Matthew D. Jones
La Lucha: framing the struggle for survival, double consciousness and the economy of identity for undocumented Latina/os
La Lucha:为无证拉丁裔/os 描绘生存斗争、双重意识和身份经济
Female dominance relationships among captive western lowland gorillas : comparisons with the wild
圈养西部低地大猩猩的雌性优势关系:与野生动物的比较
  • DOI:
    10.1163/156853999500721
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jennifer Scott;J. Lockard
  • 通讯作者:
    J. Lockard
Resilience and Coping for the Healthcare Community: A Post-disaster Group Work Intervention for Healthcare and Social Service Providers
医疗保健社区的复原力和应对:针对医疗保健和社会服务提供者的灾后团体工作干预
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paula Yuma;Tara Powell;Jennifer Scott;Mara Vinton
  • 通讯作者:
    Mara Vinton

Jennifer Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Scott', 18)}}的其他基金

Exploiting sparsity in large-scale optimization
在大规模优化中利用稀疏性
  • 批准号:
    EP/X032485/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Research Grant
RAPID: Testing Science Communication Strategies and Impact among Policymakers During a National Crisis
RAPID:测试国家危机期间决策者的科学传播策略和影响
  • 批准号:
    2030660
  • 财政年份:
    2020
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Standard Grant
Least Squares: Fit for the Future
最小二乘法:适合未来
  • 批准号:
    EP/M025179/1
  • 财政年份:
    2015
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Research Grant
Linear Algebra and Optimization: Structure, Sparsity, Algorithms and Software
线性代数和优化:结构、稀疏性、算法和软件
  • 批准号:
    EP/I013067/1
  • 财政年份:
    2011
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Research Grant
CAREER: Cosmic Recycling: Quasars, Galaxies, and Their Intergalactic Environs
职业:宇宙回收:类星体、星系及其星系间环境
  • 批准号:
    0952923
  • 财政年份:
    2010
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Continuing Grant
Enchancing HSL for HPC architectures
增强 HPC 架构的 HSL
  • 批准号:
    EP/F006535/1
  • 财政年份:
    2007
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Research Grant

相似海外基金

Development of novel therapeutic approach using serum exosomes to conquer bone metastases from lung cancer
使用血清外泌体开发新的治疗方法来克服肺癌骨转移
  • 批准号:
    23K06704
  • 财政年份:
    2023
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Colchicine to Quench the Inflammatory Response after Deep Vein Thrombosis: A Pilot Randomized Controlled Trial - CONQUER-DVT Pilot Trial
秋水仙碱可减轻深静脉血栓形成后的炎症反应:一项随机对照试验 - CONQUER-DVT 试验
  • 批准号:
    480053
  • 财政年份:
    2023
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Operating Grants
Study of distributed evolutionary computation for interrelated multi-objective optimization problems
相互关联的多目标优化问题的分布式进化计算研究
  • 批准号:
    22K12185
  • 财政年份:
    2022
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Divide-and-Conquer Approach for Strongly Interacting Systems via Convex Optimization
通过凸优化的强交互系统的分而治之方法
  • 批准号:
    2111563
  • 财政年份:
    2021
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Continuing Grant
CRCNS Research Project: Multiply and Conquer: Replica-Mean-Field Limit for Neural Networks
CRCNS 研究项目:乘法与征服:神经网络的复制平均场极限
  • 批准号:
    2113213
  • 财政年份:
    2021
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Standard Grant
MRI: Development of X-Mili: An Open, Programmable Platform to Conquer the 5G and 6G Wireless Spectrum
MRI:X-Mili 的开发:征服 5G 和 6G 无线频谱的开放式可编程平台
  • 批准号:
    2117814
  • 财政年份:
    2021
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Standard Grant
SII Planning: NASCE: A National Spectrum Center to Conquer, Program, and Protect the Wireless Spectrum
SII 规划:NASCE:征服、规划和保护无线频谱的国家频谱中心
  • 批准号:
    2037896
  • 财政年份:
    2020
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Standard Grant
A divide and conquer approach to parallelization of LTL model checking
LTL 模型检查并行化的分而治之方法
  • 批准号:
    19H04082
  • 财政年份:
    2019
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Distributed Evolutionary Computation for Real-time Many-Objective Optimization in Smart City
智慧城市实时多目标优化的分布式进化计算研究
  • 批准号:
    19K12162
  • 财政年份:
    2019
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The roles of the TAK1-Pim-2 pathway in drug resistance and bone destruction in multiple myeloma and development of novel agents to conquer them
TAK1-Pim-2 通路在多发性骨髓瘤耐药性和骨质破坏中的作用以及克服这些问题的新型药物的开发
  • 批准号:
    18K08329
  • 财政年份:
    2018
  • 资助金额:
    $ 7.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了