Divide-and-Conquer Approach for Strongly Interacting Systems via Convex Optimization
通过凸优化的强交互系统的分而治之方法
基本信息
- 批准号:2111563
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in physics, data science and engineering involve interactions of so-called agents via pairwise potentials. Beyond the simple regime where the agents are independent of each other, determining the joint states of agents often suffers from complexity that increases quickly with the dimension of the problem; this feature is called the curse-of-dimensionality. Research in this project will address these challenges by exploiting a convex optimization approach and will demonstrate synergy between various aspects of computational mathematics and data science. The project will provide new tools for the Material Genome Initiative by accelerating the computation of many-body quantum system as well as improve the capability of protein structure determination from distance-based experimental measurements. Graduate students will be involved in research and will receive interdisciplinary training. The project will develop a variety of divide-and-conquer and multiscale techniques to significantly improve the scalability of algorithms for interacting agents. In addition, tensor compression strategies will be developed to accelerate the solution of subproblems. The project will demonstrate the effectiveness of the strategy for several scenarios. In the domain of data science, through the lens of the proposed optimization methods, the PI will investigate the sensor-network localization problem and multimarginal optimal transport problem. In physics and chemistry, alternative paradigms will be developed for solving for the ground state energy of strongly correlated systems such as quantum Ising and Hubbard models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理学、数据科学和工程学中的许多问题都涉及所谓的代理通过成对势的相互作用。除了简单的制度,其中的代理是相互独立的,确定代理的联合状态往往遭受的复杂性,迅速增加的维度的问题,这个功能被称为维数的诅咒。该项目的研究将通过利用凸优化方法来解决这些挑战,并将展示计算数学和数据科学各个方面之间的协同作用。该项目将通过加速多体量子系统的计算,为材料基因组计划提供新的工具,并提高基于距离的实验测量确定蛋白质结构的能力。研究生将参与研究并接受跨学科培训。该项目将开发各种分而治之和多尺度技术,以显着提高交互代理算法的可扩展性。此外,张量压缩策略将被开发,以加速子问题的解决方案。该项目将证明该战略在几种情况下的有效性。在数据科学领域,通过所提出的优化方法的透镜,PI将研究传感器网络定位问题和多边缘最优运输问题。在物理学和化学领域,将为解决强关联系统(如量子伊辛和哈伯德模型)的基态能量开发替代范例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuehaw Khoo其他文献
Yuehaw Khoo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuehaw Khoo', 18)}}的其他基金
CAREER: Towards a general recipe for fast high-dimensional scientific computing
职业:寻找快速高维科学计算的通用方法
- 批准号:
2339439 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似海外基金
Development of novel therapeutic approach using serum exosomes to conquer bone metastases from lung cancer
使用血清外泌体开发新的治疗方法来克服肺癌骨转移
- 批准号:
23K06704 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Colchicine to Quench the Inflammatory Response after Deep Vein Thrombosis: A Pilot Randomized Controlled Trial - CONQUER-DVT Pilot Trial
秋水仙碱可减轻深静脉血栓形成后的炎症反应:一项随机对照试验 - CONQUER-DVT 试验
- 批准号:
480053 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Operating Grants
CRCNS Research Project: Multiply and Conquer: Replica-Mean-Field Limit for Neural Networks
CRCNS 研究项目:乘法与征服:神经网络的复制平均场极限
- 批准号:
2113213 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
A divide and conquer attack on challenging least squares problems
针对具有挑战性的最小二乘问题的分而治之攻击
- 批准号:
EP/W009676/1 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
MRI: Development of X-Mili: An Open, Programmable Platform to Conquer the 5G and 6G Wireless Spectrum
MRI:X-Mili 的开发:征服 5G 和 6G 无线频谱的开放式可编程平台
- 批准号:
2117814 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SII Planning: NASCE: A National Spectrum Center to Conquer, Program, and Protect the Wireless Spectrum
SII 规划:NASCE:征服、规划和保护无线频谱的国家频谱中心
- 批准号:
2037896 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
A divide and conquer approach to parallelization of LTL model checking
LTL 模型检查并行化的分而治之方法
- 批准号:
19H04082 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The roles of the TAK1-Pim-2 pathway in drug resistance and bone destruction in multiple myeloma and development of novel agents to conquer them
TAK1-Pim-2 通路在多发性骨髓瘤耐药性和骨质破坏中的作用以及克服这些问题的新型药物的开发
- 批准号:
18K08329 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of Pancreatic Stellate Cell Inactivation by Cell Stromal Regulation to Conquer Pancreatic Cancer
通过细胞基质调节建立胰腺星状细胞失活以征服胰腺癌
- 批准号:
18K08695 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of divide-and-conquer based docking method using common partial structures of hundreds of millions of compounds
使用数亿种化合物的共同部分结构开发基于分而治之的对接方法
- 批准号:
17J06897 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows