Hierarchical Deep Representations of Anatomy (HiDRA)
解剖学的层次深度表示 (HiDRA)
基本信息
- 批准号:EP/W011794/1
- 负责人:
- 金额:$ 31.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the functions of genes in animal models such as mice allows researchers to learn about their roles in human disease. High-throughput phenotyping is used to conduct broad assessments of gene function through a combination of qualitative and quantitative assays, which seek to measure or visualise specific anatomical structures or organ systems. It is essential to understanding genotype-phenotype relationships and has guided the development of therapeutic targets for developmental, cardiovascular, neurodegenerative, and sensory disorders. Skeletal phenotyping is particularly crucial from a public health standpoint, with musculoskeletal disorders being responsible for 12% of all general practitioner visits in the UK at a cost of 10.8 million working days and some £4.7 billion to the NHS per year.Broad assessments of the skeleton are particularly laborious and subjective due to its anatomical complexity and the range of potential anomalies one might observe. In mouse phenotyping, plain x-ray images are routinely acquired from multiple viewpoints, orientations and scales to ensure complete coverage of the whole animal. Phenotypes are identified through manual inspection by domain experts, which is prohibitively time-consuming to perform at scale. The International Phenotyping Consortium (IMPC) comprises eight institutions that collect x-ray images of mice and annotate up 52 different phenotypes affecting skull, teeth, ribs, spine, pelvis and limbs. This represents a monumental task, generating some 166,000 annotated images from 34,000 animals to date. However, this body of data only represents 7,500 of the 20,000 genes phenotyped so far by the IMPC. The bottleneck of manual annotation is a daunting prospect for the project and represents an unmet need for automated image analysis methods within the life sciences community. In recent years, convolutional neural networks (CNNs) have risen to prominence for their seemingly universal applicability to a wide range of image classification problems. This partly due to the fact they require little prior domain knowledge to implement, and the data require minimal pre-processing order to achieve state-of-the-art performance. However, there are nevertheless challenges that preclude their adoption for large-scale phenotyping. Traditional CNNs are not naturally suited to datasets where the number of input images is variable; an individual animal may be captured from one and up six different viewpoints in practice. Furthermore, CNNs trained to perform multiple tasks at once (i.e., one animal may exhibit multiple phenotypes) have little appreciation or knowledge of the relationships between the tasks due to anatomical proximity. Beyond the immediate use-case of CNNs for automation, there is an opportunity to leverage the internal representations learned by CNNs to perform large-scale data mining and support biological discovery.HiDRA (Hierarchical Deep Representations of Anatomy) will address these challenges by developing a "multi-view-multi-task" approach that is robust to variations in the input data, shares information between anatomically-related tasks, and learns anatomy-specific feature representations for individual animals. Information fusion from multiple viewpoints will allow for any number of images to be provided and help to indicate which view was most informative for annotation. To account for the relative scarcity of individual phenotypes, a hierarchical training scheme will be developed to share information across related tasks according to anatomical proximity. The learned representations will also be subject to constraints that minimise correlations between anatomical structures, allowing for comparisons to be made between animals in an anatomy-specific fashion using data mining techniques. Among the outputs of this research will include computational tools made available to the wider life sciences community for analysis of x-ray data at any scale.
了解基因在小鼠等动物模型中的功能,使研究人员能够了解它们在人类疾病中的作用。高通量表型分析用于通过定性和定量分析的组合对基因功能进行广泛评估,其旨在测量或可视化特定的解剖结构或器官系统。它对于理解基因型-表型关系至关重要,并指导了发育、心血管、神经退行性和感觉障碍的治疗靶点的开发。从公共卫生的角度来看,骨骼表型是特别重要的,在英国,肌肉骨骼疾病占所有全科医生就诊的12%,每年花费1080万个工作日,NHS花费约47亿英镑。由于骨骼的解剖复杂性和可能观察到的潜在异常范围,骨骼的广泛评估特别费力和主观。在小鼠表型分型中,常规地从多个视角、方向和尺度获取普通X射线图像,以确保完全覆盖整个动物。表型是通过领域专家的手动检查来识别的,这在大规模执行时非常耗时。国际表型鉴定联盟(IMPC)由八个机构组成,收集小鼠的X射线图像,并注释了影响头骨、牙齿、肋骨、脊柱、骨盆和四肢的52种不同表型。这是一项艰巨的任务,迄今为止从34,000只动物中生成了约166,000张注释图像。然而,这些数据仅代表IMPC迄今为止进行表型分析的20,000个基因中的7,500个。手动注释的瓶颈是该项目的一个令人生畏的前景,代表了生命科学界对自动图像分析方法的未满足的需求。近年来,卷积神经网络(CNN)因其对各种图像分类问题的似乎普遍适用性而变得突出。这部分是因为它们需要很少的先验领域知识来实现,并且数据需要最小的预处理顺序来实现最先进的性能。然而,仍然存在阻碍其用于大规模表型分析的挑战。传统的CNN并不适合输入图像数量可变的数据集;在实践中,单个动物可能从一个或六个不同的视角被捕获。此外,CNN被训练成一次执行多个任务(即,一只动物可能表现出多种表型)由于解剖学上的接近性而对任务之间的关系几乎没有认识或了解。除了CNN用于自动化的直接用例之外,还有机会利用CNN学习的内部表示来执行大规模数据挖掘并支持生物发现。(解剖学的分层深度表示)将通过开发一种“多视图-多任务”方法来解决这些挑战,该方法对输入数据的变化具有鲁棒性,在解剖学相关任务之间共享信息,并学习个体动物的解剖学特异性特征表示。来自多个视点的信息融合将允许提供任意数量的图像,并有助于指示哪个视图对于注释而言信息量最大。为了解释个体表型的相对稀缺性,将开发分层训练方案,以根据解剖学接近度在相关任务中共享信息。所学习的表示也将受到约束,使解剖结构之间的相关性最小化,从而允许使用数据挖掘技术以解剖学特定的方式在动物之间进行比较。这项研究的成果将包括向更广泛的生命科学界提供计算工具,用于分析任何尺度的X射线数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Brown其他文献
Do adult emotional and behavioural outcomes vary as a function of diverse childhood experiences of the public care system?
成人的情绪和行为结果是否会因公共护理系统的不同童年经历而有所不同?
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:6.9
- 作者:
Alexandru Dregan;James Brown;David Armstrong - 通讯作者:
David Armstrong
Development and validation of a training module on the use of acetic acid for the detection of Barrett’s neoplasia
开发和验证使用乙酸检测巴雷特瘤形成的培训模块
- DOI:
10.1055/s-0042-120179 - 发表时间:
2017 - 期刊:
- 影响因子:9.3
- 作者:
F. Chedgy;K. Kandiah;H. Barr;J. de Caestecker;S. Dwerryhouse;B. Erőss;C. Gordon;S. Green;A. Li;James Brown;G. Longcroft;P. Bhandari - 通讯作者:
P. Bhandari
Evaluation of an Outpatient and Telehealth Initiative to Reduce Tube Dependency in Infants with Complex Congenital Heart Disease
评估门诊和远程医疗计划以减少患有复杂先天性心脏病的婴儿对导管的依赖
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Megan Horsley;G. Hill;Sarah Kaskie;Maureen Schnautz;James Brown;Elizabeth A. Marcuccio - 通讯作者:
Elizabeth A. Marcuccio
A Relationship Between Time Perception and State-Anxiety
时间感知与状态焦虑之间的关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
James Brown - 通讯作者:
James Brown
The role of exercise therapy in the secondary prevention of falls in elderly people
运动疗法在老年人跌倒二级预防中的作用
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
M. Sivan;C. Sawyer;James Brown - 通讯作者:
James Brown
James Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Brown', 18)}}的其他基金
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320405 - 财政年份:2023
- 资助金额:
$ 31.61万 - 项目类别:
Standard Grant
Catalyst Project: Increasing Access and Inclusiveness in Cybersecurity through Lab Experiences
催化剂项目:通过实验室经验增加网络安全的可及性和包容性
- 批准号:
2205536 - 财政年份:2022
- 资助金额:
$ 31.61万 - 项目类别:
Standard Grant
Building Bridges: Fifth EU/US Summer School on Automorphic Forms and Related Topics
搭建桥梁:第五届欧盟/美国自守形式及相关主题暑期学校
- 批准号:
1951791 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
Standard Grant
REU Site: Data Science, Number Theory, and Positional Game Theory
REU 网站:数据科学、数论和位置博弈论
- 批准号:
1852001 - 财政年份:2019
- 资助金额:
$ 31.61万 - 项目类别:
Standard Grant
Retaining the Ashes: The potential for ash populations to be restored following the dieback epidemic
保留灰烬:枯死流行后灰烬数量恢复的潜力
- 批准号:
BB/R018618/1 - 财政年份:2018
- 资助金额:
$ 31.61万 - 项目类别:
Research Grant
RUI: Collaboration to Enhance Participation of Minority and Undergraduate Students in Nuclear Science
RUI:合作加强少数民族和本科生对核科学的参与
- 批准号:
1713245 - 财政年份:2017
- 资助金额:
$ 31.61万 - 项目类别:
Continuing Grant
Population structure and natural selection in the Chalara ash dieback fungus, Hymenoscyphus pseudoalbidus
查拉拉灰顶枯真菌 Hymenoscyphus pseudoalbidus 的种群结构和自然选择
- 批准号:
BB/L01291X/1 - 财政年份:2014
- 资助金额:
$ 31.61万 - 项目类别:
Research Grant
Establishment of a Scholarship Program in Chemistry and Physics
设立化学和物理奖学金项目
- 批准号:
1259427 - 财政年份:2013
- 资助金额:
$ 31.61万 - 项目类别:
Standard Grant
Wheat Association Genetics for Trait Advancement and Improvement of Lineages
小麦关联遗传学促进性状提升和谱系改良
- 批准号:
BB/J002607/1 - 财政年份:2012
- 资助金额:
$ 31.61万 - 项目类别:
Research Grant
相似国自然基金
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
- 批准号:61170020
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Deep Web敏感聚合信息保护方法研究
- 批准号:61003054
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
- 批准号:61070122
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
2348689 - 财政年份:2023
- 资助金额:
$ 31.61万 - 项目类别:
Continuing Grant
On Learning Deep Representations of Financial Markets, and Applications of Deep and Representation Learning for Portfolio Optimization and Socially Responsible Investing
关于学习金融市场的深度表示,以及深度学习和表示学习在投资组合优化和社会责任投资中的应用
- 批准号:
576229-2022 - 财政年份:2022
- 资助金额:
$ 31.61万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Safer Autonomous Driving by Embedding Behaviors in Offline Map Representations with Deep Learning
通过深度学习将行为嵌入离线地图表示中,实现更安全的自动驾驶
- 批准号:
575360-2022 - 财政年份:2022
- 资助金额:
$ 31.61万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 31.61万 - 项目类别:
Research Grant
CAREER: Learning Structured Representations with Deep Probabilistic Programs
职业:通过深度概率程序学习结构化表示
- 批准号:
2047253 - 财政年份:2021
- 资助金额:
$ 31.61万 - 项目类别:
Continuing Grant
Learning Tonal Representations of Music Signals Using Deep Neural Networks
使用深度神经网络学习音乐信号的音调表示
- 批准号:
443992185 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
Research Fellowships
A New Paradigm for Systems Physiology Modeling: Biomechanistic Learning Augmentation with Deep Differential Equation Representations (BLADDER)
系统生理学建模的新范式:利用深度微分方程表示的生物力学学习增强 (BLADDER)
- 批准号:
10206953 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
A New Paradigm for Systems Physiology Modeling: Biomechanistic Learning Augmentation with Deep Differential Equation Representations (BLADDER)
系统生理学建模的新范式:利用深度微分方程表示的生物力学学习增强 (BLADDER)
- 批准号:
10472818 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1956050 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1955154 - 财政年份:2020
- 资助金额:
$ 31.61万 - 项目类别:
Continuing Grant