CBET-EPSRC Direct methane conversion into valuable oxygenates via tandem catalysis

CBET-EPSRC 通过串联催化将甲烷直接转化为有价值的含氧化合物

基本信息

  • 批准号:
    EP/W014408/1
  • 负责人:
  • 金额:
    $ 121.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The chemical industry recognises the need to address the principles of sustainability and there is an urgent need to design processes as new paradigms in modern manufacturing residues or, if unavoidable, to recycle them. However, sustainability also requires the design of chemical processes that minimise the use of energy and direct the reaction towards the desired products, i.e. high selectivity at the required conversion with minimum energy consumption. Catalysis must be at the core of any new chemical process and the development of active, stable, and selective catalysts will be key for chemical sustainability. Most industrial chemical processes involve several chemical steps and each step often uses a different catalyst. Product separation and purification between each step also requires further equipment and energy consumption and hence it is highly beneficial to simplify the overall process. In this project, we aim to minimise the number of individual steps in chemical processes by tandem reactions with multifunctional heterogeneous catalytic systems that can perform the consecutive chemical reactions in one reaction, and we will achieve this using microchannel reactors. Moreover, we aim to achieve this for the preparation of key platform chemicals e.g. acetic acid is a major chemical intermediate that currently require several chemical process steps. The main objective of this project is to design and develop multifunctional catalysts combined with a microchannel structured reactor to convert methane into value-added oxygenate products including methanol and acetic acid via a tandem oxidative carbonylation process. The use of tandem heterogeneous catalysis represents an exceptionally novel approach to both catalyst and reaction design. We will explore the use of microchannel reactors for methane oxidation/carbonylation. Catalyst synthesis will be coupled with this reactivity testing and catalyst design will be driven by the reactor data. Catalysts will be characterised using state-of-the-art techniques. The engineering and science will operate in an iterative manner with each new step informing the overall programme. What will success look like? Success will be the demonstration of the potential of a bespoke combination of a microchannel reactor coupled with multifunctional catalysts, generating enhanced performance that could lead to a paradigm shift in the synthesis and application of catalytic tandem reactions.
化学工业认识到需要解决可持续性原则,迫切需要设计工艺作为现代制造残留物的新范例,或者如果不可避免,回收它们。然而,可持续性还要求化学工艺的设计最大限度地减少能源的使用,并将反应导向所需的产物,即在所需转化率下以最小的能耗实现高选择性。催化必须是任何新的化学工艺的核心,活性,稳定和选择性催化剂的开发将是化学可持续性的关键。大多数工业化学过程涉及几个化学步骤,每个步骤通常使用不同的催化剂。每个步骤之间的产物分离和纯化还需要进一步的设备和能量消耗,因此简化整个过程是非常有益的。在这个项目中,我们的目标是通过多功能多相催化系统的串联反应来最大限度地减少化学过程中的单个步骤,这些多功能多相催化系统可以在一个反应中进行连续的化学反应,我们将使用微通道反应器来实现这一目标。此外,我们的目标是在制备关键平台化学品时实现这一目标,例如乙酸是一种主要的化学中间体,目前需要几个化学工艺步骤。本项目的主要目标是设计和开发多功能催化剂与微通道结构反应器相结合,通过串联氧化羰基化工艺将甲烷转化为包括甲醇和乙酸在内的附加值可回收产品。串联多相催化的使用代表了催化剂和反应设计的一种非常新颖的方法。我们将探索使用微通道反应器的甲烷氧化/羰基化。催化剂合成将与反应性测试相结合,催化剂设计将由反应器数据驱动。催化剂将使用最先进的技术进行表征。工程和科学将以迭代的方式运作,每一个新的步骤都会为整个计划提供信息。成功会是什么样子?成功将是一个定制的结合的微通道反应器与多功能催化剂,产生增强的性能,可能导致在催化串联反应的合成和应用的范式转变的潜力的示范。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Hutchings其他文献

Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols
用于纤维素转化为多元醇的大孔-介孔碳负载镍催化剂
  • DOI:
    10.1039/c8gc01624k
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Bin Zhang;Bin Chen;Mark Douthwaite;Qiang Liu;Chao Zhang;Qifan Wu;Ruhui Shi;Peixuan Wu;Fengyu Zhao;Graham Hutchings
  • 通讯作者:
    Graham Hutchings
Effect of Dehydration of VOPO4⋅2H2O on the Preparation and Reactivity of Vanadium Phosphate Catalyst for the Oxidation of n-Butane
  • DOI:
    10.1023/a:1013261219256
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    F. Javier Cabello Sanchez;J. Antonio Lopez-Sanchez;Richard P.K. Wells;Colin Rhodes;Asghar-Zeini Isfahani;Graham Hutchings
  • 通讯作者:
    Graham Hutchings
Tailpiece
  • DOI:
    10.1016/0926-860x(94)80251-3
  • 发表时间:
    1994-06-09
  • 期刊:
  • 影响因子:
  • 作者:
    Graham Hutchings
  • 通讯作者:
    Graham Hutchings
Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells
  • DOI:
    10.1186/1477-7827-6-43
  • 发表时间:
    2008-09-16
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Graham Hutchings;Thomas Gevaert;Jan Deprest;Tania Roskams;Alfons Van Lommel;Bernd Nilius;Dirk De Ridder
  • 通讯作者:
    Dirk De Ridder
Correction to: Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol
  • DOI:
    10.1007/s11244-018-1081-4
  • 发表时间:
    2018-11-12
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Hasliza Bahruji;Jonathan Ruiz Esquius;Michael Bowker;Graham Hutchings;Robert D. Armstrong;Wilm Jones
  • 通讯作者:
    Wilm Jones

Graham Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Hutchings', 18)}}的其他基金

International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
  • 批准号:
    EP/Y029305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Fellowship
Rapid air and surface disinfection using dry hydrogen peroxide
使用干燥过氧化氢快速空气和表面消毒
  • 批准号:
    EP/W010836/1
  • 财政年份:
    2021
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
New catalysis for the utilisation of recalcitrant polysaccharides
利用顽固多糖的新催化剂
  • 批准号:
    EP/V044060/1
  • 财政年份:
    2021
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
Rapid catalytic disinfection of surfaces, PPE and transportation
对表面、个人防护装备和运输进行快速催化消毒
  • 批准号:
    EP/V031589/1
  • 财政年份:
    2020
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
New trimetallic nanoparticles as catalysts for the conversion of carbon dioxide to renewable fuels
新型三金属纳米粒子作为二氧化碳转化为可再生燃料的催化剂
  • 批准号:
    EP/S030468/1
  • 财政年份:
    2019
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
The UK Catalysis Hub -'Core'
英国催化中心——“核心”
  • 批准号:
    EP/R026939/1
  • 财政年份:
    2018
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
Parallel-screening equipment for advanced catalyst testing and process intensification
用于先进催化剂测试和工艺强化的平行筛选设备
  • 批准号:
    EP/P001467/1
  • 财政年份:
    2016
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
The UK Catalysis Hub
英国催化中心
  • 批准号:
    EP/K014854/1
  • 财政年份:
    2013
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
New Green Methanol Production
新型绿色甲醇生产
  • 批准号:
    EP/J013420/1
  • 财政年份:
    2012
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 121.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了