Chemically Engineered Quantum Materials: Encapsulation for Spatially Controlled Spins as a Quantum Sensor
化学工程量子材料:作为量子传感器的空间控制自旋封装
基本信息
- 批准号:EP/W027542/1
- 负责人:
- 金额:$ 66.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum technologies have tremendous potential to bring about global prosperity through increased cyber security, faster communications technology and a revolution in medicine and healthcare. To accomplish these goals we must first develop the materials that are capable of supporting the pre-requisite properties. In this project, we focus on "spin" technologies and their potential as extremely sensitive microwave amplifiers, known as a MASER, which stands for "microwave amplification by stimulated emission of radiation", the microwave equivalent of a LASER. Microwaves are the language of modern day wireless technology - Bluetooth, 4G and 5G, mobile communications, deep space imaging and even medical scanners such as magnetic resonance imaging (MRI), all rely on our ability to send and receive microwave signals. Alas, even today, noise from the earth and any source of heat can scramble our signals such that weak signals become impossible to detect. This thermal noise is the reason the MRI scanners take so long, and why our most sensitive telescopes operate in the cold vacuum of space. MASERs however, a recently rejuvenated form of quantum technology which was originally discovered in the 1950s, may enable us to detect these extremely weak signals from amongst the noise and at room temperature. MASER material operate using contribution energy emitted from specific electron transitions within a molecule that we are able to induce by first shining the material with a laser. This generates a cascade of events that produces an artificially low-noise environment, and initiates a state where groups of molecules are sensitive to stimulation by specific frequencies of microwave photons. When stimulated by a microwave input signal for example, all of these molecules emit at precisely the frequency of the signal, effectively amplifying it. However, while extraordinary, current MASER materials are too inefficient and large for commercial exploitation. That's why this proposal aims to vastly improve the MASER gain (i.e. amplification ability and signal-to-noise ratio), the pre-requisite conditions of operation, and reduce the size of the MASER to become wholly more practicable. This will be accomplished by making targeted chemical changes to MASER materials, that will reduce the effective noise temperature, increase the number of molecules that are capable of amplifying a signal at any one time, and narrow the frequency of emission to more closely match that of the input signal. Furthermore, we seek to miniaturise MASER devices by using cutting-edge molecular deposition techniques and much smaller supporting optical and electrical support.
量子技术具有通过提高网络安全、更快的通信技术以及医学和医疗保健革命带来全球繁荣的巨大潜力。为了实现这些目标,我们必须首先开发能够支持先决条件属性的材料。在这个项目中,我们专注于“自旋”技术及其作为极其灵敏的微波放大器的潜力,称为MASER,它代表“受激辐射微波放大”,相当于激光的微波。微波是现代无线技术的语言-蓝牙,4G和5G,移动的通信,深空成像,甚至磁共振成像(MRI)等医疗扫描仪,都依赖于我们发送和接收微波信号的能力。唉,即使在今天,来自地球的噪音和任何热源都可以扰乱我们的信号,使微弱的信号变得无法检测。这种热噪声是MRI扫描仪需要这么长时间的原因,也是我们最灵敏的望远镜在寒冷的真空中工作的原因。然而,MASER是一种最近复兴的量子技术形式,最初发现于20世纪50年代,可以使我们能够在室温下从噪声中检测到这些极其微弱的信号。MASER材料利用分子内特定电子跃迁发射的贡献能量进行操作,我们能够通过首先用激光照射材料来诱导分子内特定电子跃迁。这产生了一系列事件,产生了一个人为的低噪声环境,并启动了一个状态,其中分子组对特定频率的微波光子的刺激敏感。例如,当受到微波输入信号的刺激时,所有这些分子都以精确的信号频率发射,有效地放大了信号。然而,尽管非常出色,但目前的MASER材料对于商业开发来说效率太低,体积太大。这就是为什么这个建议旨在大大提高脉泽增益(即放大能力和信噪比),操作的先决条件,并减少脉泽的尺寸变得更加实用。这将通过对微波激射器材料进行有针对性的化学改变来实现,这将降低有效噪声温度,增加能够在任何一个时间放大信号的分子数量,并缩小发射频率以更接近地匹配输入信号。此外,我们寻求通过使用尖端的分子沉积技术和更小的光学和电学支持来实现MASER设备。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Photovoltaic Performances of Lead-Free Cs 2 AgBiBr 6 Double Perovskite Solar Cells Incorporating Tetracene as Co-Hole Transport Layer
采用并四苯作为共空穴传输层的无铅 Cs 2 AgBiBr 6 双钙钛矿太阳能电池的光伏性能改进
- DOI:10.1002/solr.202300391
- 发表时间:2023
- 期刊:
- 影响因子:7.9
- 作者:Daem N
- 通讯作者:Daem N
N-heteroacenes as an organic gain medium for room temperature masers
N-杂并苯作为室温微波激射器的有机增益介质
- DOI:10.26434/chemrxiv-2023-j0rj6-v2
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Attwood M
- 通讯作者:Attwood M
N-Heteroacenes as an Organic Gain Medium for Room-Temperature Masers.
- DOI:10.1021/acs.chemmater.3c00640
- 发表时间:2023-06-13
- 期刊:
- 影响因子:8.6
- 作者:Attwood, Max;Xu, Xiaotian;Newns, Michael;Meng, Zhu;Ingle, Rebecca A.;Wu, Hao;Chen, Xi;Xu, Weidong;Ng, Wern;Abiola, Temitope T.;Stavros, Vasilios G.;Oxborrow, Mark
- 通讯作者:Oxborrow, Mark
Move Aside Pentacene: Diazapentacene-Doped para-Terphenyl, a Zero-Field Room-Temperature Maser with Strong Coupling for Cavity Quantum Electrodynamics.
并五苯:二氮杂并五苯掺杂的对三联苯,一种零场室温微波激射器,具有用于腔量子电动力学的强耦合。
- DOI:10.1002/adma.202300441
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ng W
- 通讯作者:Ng W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Attwood其他文献
Room-Temperature Quasi-Continuous-Wave Pentacene Maser Pumped by an Invasive
Ce:YAG
Luminescent Concentrator
由侵入式 Ce:YAG 发光聚光器泵浦的室温准连续波并五苯脉泽
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hao Wu;Xiangyu Xie;Wern Ng;Seif Mehanna;Yingxu Li;Max Attwood;M. Oxborrow - 通讯作者:
M. Oxborrow
Sequential Detection
顺序检测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hao Wu;Xiangyu Xie;Wern Ng;Seif Mehanna;Yingxu Li;Max Attwood;M. Oxborrow - 通讯作者:
M. Oxborrow
Max Attwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nanoscale Interaction of Engineered Quantum Dots with Cephem Skeleton
工程量子点与头孢烯骨架的纳米级相互作用
- 批准号:
2313252 - 财政年份:2023
- 资助金额:
$ 66.57万 - 项目类别:
Standard Grant
Next Generation Quantum Detector Utilising Engineered Materials for Short-wave Infrared Applications
利用工程材料进行短波红外应用的下一代量子探测器
- 批准号:
EP/W028166/1 - 财政年份:2023
- 资助金额:
$ 66.57万 - 项目类别:
Fellowship
Canadian consortium for Quantum-Engineered States and Transduction (CanQuEST)
加拿大量子工程国家和传导联盟 (CanQuEST)
- 批准号:
578464-2022 - 财政年份:2022
- 资助金额:
$ 66.57万 - 项目类别:
Alliance Grants
Quantum sensing from the bottom up with engineered semiconductor devices
使用工程半导体器件自下而上进行量子传感
- 批准号:
DP210103769 - 财政年份:2021
- 资助金额:
$ 66.57万 - 项目类别:
Discovery Projects
Emergent many-body phenomena in engineered quantum optical systems
工程量子光学系统中出现的多体现象
- 批准号:
FT200100844 - 财政年份:2021
- 资助金额:
$ 66.57万 - 项目类别:
ARC Future Fellowships
The Fundamentals of Engineered Surface Metrology based on Quantum Effect of Photon Scattering
基于光子散射量子效应的工程表面计量学基础
- 批准号:
21K18159 - 财政年份:2021
- 资助金额:
$ 66.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Non-Equilibrium Steady States and Dynamics in a Tapped-Ion Quantum Simulator with Engineered Dissipation
具有工程耗散的抽头离子量子模拟器中的非平衡稳态和动态
- 批准号:
2112893 - 财政年份:2021
- 资助金额:
$ 66.57万 - 项目类别:
Continuing Grant
US-Ireland Joint R&D Partnership: Strained Engineered Germanium Quantum-Well Laser on GaAs and Si for Optical Coherence Tomography
美国-爱尔兰联合R
- 批准号:
2042079 - 财政年份:2021
- 资助金额:
$ 66.57万 - 项目类别:
Standard Grant
Quantum properties of engineered atomic-scale structures in silicon for future device applications
用于未来设备应用的硅工程原子级结构的量子特性
- 批准号:
2421790 - 财政年份:2020
- 资助金额:
$ 66.57万 - 项目类别:
Studentship
QLCI-CG: Center for a Quantum-Engineered Distributed Computing and Communication Testbed
QLCI-CG:量子工程分布式计算和通信测试台中心
- 批准号:
1936948 - 财政年份:2019
- 资助金额:
$ 66.57万 - 项目类别:
Standard Grant