CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure

职业:通过调制异质结构内部电场实现快速充电储能装置

基本信息

  • 批准号:
    2240507
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Fast-charging capability, as one of the key features of energy storage devices, has drawn extensive interest. It holds great promise to expand or accelerate their applications in many areas, especially for fast-charging electric vehicles to replace internal combustion engine vehicles, as well as stabilizing energy storage from renewable energy sources that are inherently intermittent such as wind and wave energy. However, common energy storage devices, such as batteries, have exhibited severe degradation under fast charging conditions. This Career project is to develop a practical method to develop fast-charging energy storage devices by introducing an internal electric field in the electrode to improve the electrode kinetics and the device performance. The project will host Bootcamp to train rural middle and high school teachers in developing science curricula, equipping them to deliver enriching classroom activities and lectures. Moreover, the project will involve underrepresented students performing science and engineering related projects, especially Native Americans, women, and first-generation college students.The research objective of this Career project aims to develop a novel heterostructure in the electrode to improve the fast-charging capability of energy storage devices by more than 10 times compared with state-of-the-art research studies. Based on the preliminary studies, the central hypothesis is that an internal electric field, generated on the heterointerfaces can accelerate ion transport, enhance electrode kinetics by lowering the energy of activation, and hence improve the performance under fast-charging conditions. It is expected to address this challenge and fundamentally advance the correlation between the electric field of the heterostructure, and the resulting fast-charging performance at the energy storage device level. The major contributions to those multidisciplinary fields lie in several aspects. First, a fundamental understanding will be generated on the effect of the local electric field of the heterostructure on the diffusion coefficient and electrode kinetics. A simulation model will also be created to be integrated with experimental efforts. Second, a knowledge gap will be filled from the material properties of the electrode to the fast-charging functionality of the devices. Third, distinct from conventional nanostructure engineering approaches in state-of-the-art research studies, which have a complex and high-cost fabrication process, introducing a heterostructure in the electrode provides an effective, safe, facile, and transformative approach that remarkably enhances the charge transfer and holds great promise to resolve one of the biggest issues, “long charging time,” of existing energy storage devices. The fundamental study will also open a new door to resolving issues in other energy devices by modulating the electronic structures in the devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。快速充电能力作为储能设备的关键特征之一,引起了广泛的兴趣。它具有很大的希望,可以扩大或加速它们在许多领域的应用,特别是快速充电电动汽车,以取代内燃机汽车,以及稳定风能和波浪能等固有间歇性的可再生能源的能量存储。然而,普通的能量存储装置,例如电池,在快速充电条件下已经表现出严重的退化。本职业项目旨在开发一种实用的方法,通过在电极中引入内部电场来开发快速充电储能设备,以改善电极动力学和设备性能。该项目将举办Bootcamp,培训农村初中和高中教师制定科学课程,使他们能够开展丰富的课堂活动和讲座。此外,该项目还将邀请少数学生,特别是美国原住民、女性和第一代大学生参与科学和工程相关项目。该职业项目的研究目标是开发一种新型电极异质结构,以将储能设备的快速充电能力提高10倍以上。基于初步研究,中心假设是,在异质界面上产生的内部电场可以加速离子传输,通过降低活化能来增强电极动力学,从而提高快速充电条件下的性能。它有望解决这一挑战,并从根本上提高异质结构的电场之间的相关性,并在能量存储器件水平上产生快速充电性能。对这些多学科领域的主要贡献体现在几个方面。首先,将产生一个基本的理解上的异质结构的局部电场的扩散系数和电极动力学的效果。还将建立一个模拟模型,与实验工作相结合。其次,从电极的材料特性到设备的快速充电功能,将填补知识空白。第三,与最先进的研究中具有复杂和高成本制造工艺的传统纳米结构工程方法不同,在电极中引入异质结构提供了一种有效、安全、简便和变革性的方法,该方法显著增强了电荷转移,并很有希望解决现有能量存储设备的最大问题之一“长充电时间”。该基础研究还将为通过调节设备中的电子结构来解决其他能源设备中的问题打开一扇新的大门。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Realizing Rapid Kinetics of Na Ions in Tin‐Antimony Bimetallic Sulfide Anode with Engineered Porous Structure
  • DOI:
    10.1002/sstr.202300100
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    W. He;Yuhe Mu;B. Lamsal;Wei Ding;Zhongjiu Yang;Jyotshna Pokharel;Jingjing Yu;Shun Lu;Guoping Xiong;Xiaojun Xian;Yue Zhou
  • 通讯作者:
    W. He;Yuhe Mu;B. Lamsal;Wei Ding;Zhongjiu Yang;Jyotshna Pokharel;Jingjing Yu;Shun Lu;Guoping Xiong;Xiaojun Xian;Yue Zhou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Zhou其他文献

A Review of the Speeding Intervention Effectiveness and Acceptance of Intelligent Speed Adaptation
超速干预效果及智能车速适应接受度综述
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuanyun Fu;Haiyue Liu;Yue Zhou
  • 通讯作者:
    Yue Zhou
Constructing a 3D-printable, bioceramic sheathed articular spacer assembly for infected hip arthroplasty
构建用于感染髋关节置换术的可 3D 打印生物陶瓷护套关节垫片组件
Tunable Linearity of Weight Update in Low Voltage Synaptic Transistors with Periodic High‐k Laminates
具有周期性高 k 层压板的低压突触晶体管中重量更新的可调线性度
  • DOI:
    10.1002/aelm.202200137
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yushan Li;Ruiqiang Tao;Beijing Zhang;Wentao Shuai;Yue Zhou;Cheng Chang;Ting Huang;Zihao Xu;Zhen Fan;Guofu Zhou;Xubing Lu;Jun-Ming Liu
  • 通讯作者:
    Jun-Ming Liu
Presleep Heart-Rate Variability Biofeedback Improves Mood and Sleep Quality in Chinese Winter Olympic Bobsleigh Athletes.
睡前心率变异生物反馈可改善中国冬奥有舵雪橇运动员的情绪和睡眠质量。
Optimization of Belt-type Cylinder Based on Orthogonal Calculation
基于正交计算的带式气缸优化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongmei Cai;Qiang Wang;Dong Zhao;Yue Zhou
  • 通讯作者:
    Yue Zhou

Yue Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Zhou', 18)}}的其他基金

Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2312247
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
  • 批准号:
    2144708
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RII Track-4 NSF: Novel Structure and Properties of Hybrid Electrolytes for Lithium Metal Batteries
RII Track-4 NSF:锂金属电池混合电解质的新颖结构和性能
  • 批准号:
    2132021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SiemensEPSRC Digital Twin with Data-Driven Predictive Control: Unlocking Flexibility of Industrial Plants for Supporting a Net Zero Electricity System
具有数据驱动预测控制功能的西门子 EPSRC 数字孪生:释放工业工厂的灵活性,支持净零电力系统
  • 批准号:
    EP/W028573/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2038082
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FAST搜寻及观测的脉冲星多波段辐射机制研究
  • 批准号:
    12403046
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
FAST连续观测数据处理的pipeline开发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
  • 批准号:
    12373012
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
  • 批准号:
    12373001
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
  • 批准号:
    12373109
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于FAST的纳赫兹引力波研究
  • 批准号:
    LY23A030001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
  • 批准号:
    10099143
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Building Australia's Electric Vehicle Fast Charging Infrastructure
建设澳大利亚电动汽车快速充电基础设施
  • 批准号:
    LP210200473
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
Understanding the surfaces of fast charging battery materials: SURF-FAST
了解快速充电电池材料的表面:SURF-FAST
  • 批准号:
    10060998
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
The race to net zero necessitates the development of fast-charging and sustainable rechargeable batteries with long lifetimes and high capacity. One p
实现净零排放的竞赛需要开发具有长寿命和高容量的快速充电和可持续充电电池。
  • 批准号:
    2891660
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Performance Guarantees for Electric Vehicle Fast Charging Station Management
电动汽车快速充电站管理的绩效保证
  • 批准号:
    2312196
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Improving the high-temperature operations of fast-charging lithium-ion batteries
改善快充锂离子电池的高温运行
  • 批准号:
    10040160
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Enabling Extreme Fast-Charging of Lithium-ion Batteries with Covalently-Joined Electrode Architectures - Phase I
利用共价连接电极架构实现锂离子电池的极快充电 - 第一阶段
  • 批准号:
    577513-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Idea to Innovation
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
  • 批准号:
    2144708
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
High efficiency electric vehicle drivetrains with integrated fast-charging and dual storage media
具有集成快速充电和双存储介质的高效电动汽车传动系统
  • 批准号:
    513206-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了