Electrolysis at scale: a pathway to lower precious metal content electrolysers
大规模电解:降低电解槽贵金属含量的途径
基本信息
- 批准号:EP/X009734/1
- 负责人:
- 金额:$ 49.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Clean and sustainable hydrogen will have a major impact in the future of several sectors of our economy - from industrial processes (e.g. steel and concrete manufacturing), domestic and industrial heating, to the transportation sector (e.g. fuel cells and combustion engines), hydrogen offers many pathways to decarbonisation. This has been clearly articulated recently in the UK Government's Hydrogen Strategy. However, to enable hydrogen to fulfil its potential, it must be produced by renewable power, without carbon-emissions. Splitting water into hydrogen and oxygen with electricity (electrolysis) is one of the most promising technologies to meet this challenge. Indeed, commercialised electrolysers exist today that generate "green" hydrogen at industrially relevant scales. However, to date, 96% of hydrogen is produced from fossil fuel derived processes resulting in carbon-emissions. While a portfolio of electrolyser technologies will likely play important roles in the long term, proton exchange membrane electrolysers (PEM-ELs) are widely anticipated to provide the base capacity in the short and medium term. Despite this expectation, the high cost of green hydrogen from PEM-EL is a major barrier. PEM-ELs today require precious and scarce iridium and platinum-based catalysts. Indeed, technoeconomic analyses show that when manufactured at scale, the PEM-EL stack is the most expensive component of the electrolyser, and the anode electrodes (iridium catalyst and transport layers) will account for the majority of the stack cost. Diversification of catalyst composition (i.e. to move away from pure iridium catalysts) thus, represents a substantial opportunity that could enable significant growth in green hydrogen generation using PEM-Els. This proposal offers a novel and unified strategy to develop synthetic methods and utilise advanced materials characterisations to feed-forward into the design of reduced iridium-content catalysts. We will explore our electrocatalysts through a translational approach, from "model system" thin films, to nanopowdered studies and commercially relevant testing, providing insight into which properties (conductivity, intrinsic activity, durability) dictate and control catalyst performance across these different testing beds. Furthermore, our synthesis methods, including co-sputtering from multi-magnetron systems will enable precision and great flexibility in catalyst composition. Working with our industrial partner, Johnson Matthey, the most active nanopowder catalysts will be benchmarked against commercial materials using industrial testing protocols. Throughout the project, we will leverage an array of advanced materials characterisation techniques to correlate structural and chemical properties to the catalyst performance, mimicking the operating conditions within a working electrolyser. In summary, the proposed work herein will implement catalysts with nanometer precision, uncovering design strategies and characterising catalysts under operating conditions and therefore accelerating the development of cost-effective catalysts for sustainable hydrogen production.
清洁和可持续的氢将对我们经济的几个部门的未来产生重大影响-从工业过程(例如钢铁和混凝土制造),家庭和工业供暖,到运输部门(例如燃料电池和内燃机),氢提供了许多脱碳途径。最近,英国政府的氢战略明确阐述了这一点。然而,为了使氢能够发挥其潜力,它必须由无碳排放的可再生能源生产。用电将水分解为氢和氧(电解)是应对这一挑战最有前途的技术之一。事实上,目前已经商业化的电解槽可以在工业相关规模上产生“绿色”氢。然而,迄今为止,96%的氢是由化石燃料衍生的过程产生的,导致碳排放。虽然从长远来看,一系列电解槽技术将发挥重要作用,但人们普遍预计质子交换膜电解槽(PEM-ELs)将在中短期内提供基本产能。尽管有这样的期望,但从PEM-EL中获得绿色氢的高成本是一个主要障碍。如今,pem - el需要稀有的铱和铂基催化剂。事实上,技术经济分析表明,当大规模生产时,PEM-EL电池组是电解槽中最昂贵的组件,而阳极电极(铱催化剂和传输层)将占电池组成本的大部分。因此,催化剂组成的多样化(即摆脱纯铱催化剂)代表了一个巨大的机会,可以使使用pem - el的绿色制氢实现显着增长。这一建议提供了一种新的和统一的策略来开发合成方法,并利用先进的材料特性来前馈到还原铱含量催化剂的设计中。我们将通过一种转化的方法来探索我们的电催化剂,从“模型系统”薄膜,到纳米粉末研究和商业相关测试,提供洞察哪些特性(电导率,固有活性,耐久性)决定和控制催化剂在这些不同的测试平台上的性能。此外,我们的合成方法,包括多磁控管系统的共溅射,将使催化剂组成的精度和灵活性大大提高。与我们的工业合作伙伴庄信万丰合作,最活跃的纳米粉末催化剂将使用工业测试协议对商业材料进行基准测试。在整个项目中,我们将利用一系列先进的材料表征技术,将结构和化学性质与催化剂性能联系起来,模拟电解槽工作中的操作条件。总之,本文提出的工作将实现纳米精度的催化剂,揭示设计策略并在操作条件下表征催化剂,从而加速可持续制氢的经济高效催化剂的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurie King其他文献
An Umbrella Review of Systematic Reviews of Pharmacological Treatments Post-TBI
- DOI:
10.1016/j.apmr.2017.08.464 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Sonya Kim;Marianne Mortera;Lilian Hoffecker;Amy Herrold;Laurie King;Lauren Terhorst;Xiaolei Hu;Shilpa Krishnan;Joseph Machtinger;Patricia Heyn - 通讯作者:
Patricia Heyn
Dual-task Rehabilitation for Chronic Symptoms after Concussion: A Case Series in a Non-Athlete Population
- DOI:
10.1016/j.apmr.2019.10.037 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Kyle Harvison;Teri Takehiro;Christine Pocrnich;Patrick Michielutti;Laurie King;Margaret Weightman - 通讯作者:
Margaret Weightman
Laurie King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
- 批准号:
10641389 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
ESSENCE (Enabling translation of Science to Service to ENhance Depression CarE)
ESSENCE(将科学转化为服务以增强抑郁症 CarE)
- 批准号:
10630486 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 49.87万 - 项目类别: