Beyond neuromorphic: Exploiting the extended frequency response of memristive devices and systems to process information in new ways.

超越神经形态:利用忆阻设备和系统的扩展频率响应以新的方式处理信息。

基本信息

  • 批准号:
    EP/X017001/1
  • 负责人:
  • 金额:
    $ 25.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

We propose to establish a wholly new direction in computing hardware. We will develop devices and circuits that initially take inspiration from the way the brain processes information (so-called neuromorphic computing), but will go beyond this to develop a radical new approach that uses the dynamics of the frequency response of neuromorphic devices known as memristors to process information in novel and powerful ways. Such devices are currently used as variable electrical resistors whose resistance depends on their past history. In this work we will exploit their rich dynamics by using their complex frequency response to process signals in the frequency domain and to modify the behaviour of other coupled devices in simple circuits.This work promises to open up a new direction for memristor research and address a pressing issue for modern computing systems: their increasingly unsustainable energy demands. Given that a single state-of-the-art machine learning system can generate as much CO2 during training as five cars emit over their lifetime, and that global data centres currently consume around 250TWh per year, new low-power computing approaches are needed urgently. Neuromorphic systems take inspiration from biology to close the six order of magnitude power consumption gap between the brain and digital computing systems. In this work we will go further and add capabilities not found in biology: processing using modification of the complex frequency response of systems. This project will establish a key toolbox of novel devices to underpin next generation neuromorphic and "neuromorphic plus" computing systems.
我们建议在计算机硬件领域建立一个全新的方向。我们将开发最初从大脑处理信息的方式(所谓的神经形态计算)中获得灵感的设备和电路,但将超越这一点,开发一种全新的方法,使用称为忆阻器的神经形态设备的频率响应动力学以新颖而强大的方式处理信息。这种器件目前被用作可变电阻器,其电阻取决于其过去的历史。在这项工作中,我们将利用它们丰富的动态特性,利用它们复杂的频率响应在频域中处理信号,并在简单的电路中修改其他耦合器件的行为,这项工作有望为忆阻器研究开辟一个新的方向,并解决现代计算系统的一个紧迫问题:它们日益不可持续的能源需求。考虑到一个最先进的机器学习系统在训练过程中产生的二氧化碳相当于五辆汽车在其使用寿命中排放的二氧化碳,并且全球数据中心目前每年消耗约250太瓦时,迫切需要新的低功耗计算方法。神经形态系统从生物学中获得灵感,以缩小大脑和数字计算系统之间六个数量级的功耗差距。在这项工作中,我们将进一步增加生物学中没有的功能:使用系统复杂频率响应的修改进行处理。该项目将建立一个新设备的关键工具箱,以支持下一代神经形态和“神经形态加”计算系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Kenyon其他文献

Anthony Kenyon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Kenyon', 18)}}的其他基金

Structural dynamics of amorphous functional oxides - the role of morphology and electrical stress
非晶功能氧化物的结构动力学 - 形态和电应力的作用
  • 批准号:
    EP/P013503/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Resistive switches (RRAM) and memristive behaviour in silicon-rich silicon oxides
富硅氧化硅中的电阻开关 (RRAM) 和忆阻行为
  • 批准号:
    EP/K01739X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Continuously Tunable Optical Buffer
连续可调光缓冲器
  • 批准号:
    EP/J012823/1
  • 财政年份:
    2012
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Silicon emission technologies based on nanocrystals
基于纳米晶体的硅发射技术
  • 批准号:
    EP/H000240/1
  • 财政年份:
    2009
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Field Emission Vacuum Magnetic Sensors
场发射真空磁传感器
  • 批准号:
    EP/D049857/1
  • 财政年份:
    2006
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant

相似海外基金

NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Continuing Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Solution-based Transition Metal Dichalcogenides for Flexible Neuromorphic Electronics
用于柔性神经形态电子器件的基于溶液的过渡金属二硫属化物
  • 批准号:
    EP/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
  • 批准号:
    EP/Y003276/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
STTR Phase I: Development and Analysis of Functional NanoInks for Printed Neuromorphic Electronics and Smart Sensors
STTR 第一阶段:用于印刷神经形态电子和智能传感器的功能性纳米墨水的开发和分析
  • 批准号:
    2334413
  • 财政年份:
    2024
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
A Reconfigurable Neuromorphic Compute System for Brain-Scale Simulations
用于大脑规模模拟的可重构神经形态计算系统
  • 批准号:
    LE230100034
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Autonomous Learning and Development in Embodied Neuromorphic Systems (ALDENS)
具身神经形态系统的自主学习和发展(ALDENS)
  • 批准号:
    EP/X018733/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了