Autonomous Learning and Development in Embodied Neuromorphic Systems (ALDENS)
具身神经形态系统的自主学习和发展(ALDENS)
基本信息
- 批准号:EP/X018733/1
- 负责人:
- 金额:$ 25.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project ambition is to create an open-ended artificial mind for robots that can grow up like a child - autonomously learning and developing new skills via multimodal interaction with humans and the environment. This will enable a globally desired paradigm shift in AI and robotics: from performing narrowly pre-defined tasks to autonomous mental development.To this end, ALDENS will pioneer an innovative cross-disciplinary approach to generate models of interactive robots with real-time developmental human-like learning made possible by efficient brain-like (neuromorphic) computing, which will go above and beyond what is currently possible with the mainstream deep-learning approach.The ALDENS project will establish the new developmental neuromorphic paradigm, a synergic combination that will go beyond the limitations of the individual paradigms: developmental robotics will deliver the missing learning mechanisms for neuromorphic spiking neural networks; meanwhile, neuromorphic computing will provide efficient brain-like resources with an accurate representation of the real world. Specifically, the research in this project will create and validate new ground-breaking methodologies to build an autonomous, flexible, and scalable artificial brain architecture. These will transform the design of interactive robots' cognitive architectures. Indeed, the planned innovative developments will pave the way for the expected paradigm shift and lay the foundations of the next generation of truly autonomous robots able to reason, behave and interact in a human-like fashion.A general risk factor for research modelling of the human brain is that its functional organisation and learning mechanisms are not yet fully understood. There is disagreement within the cross-disciplinary scientific community regarding the fundamental structure and capabilities that should be modelled in artificial agents. This makes this research uncertain, with each discipline having its own view of "intelligence"; different experimental procedures and methodologies to interpret the results.Importantly, the new developmental neuromorphic models will be a powerful tool for increasing the research capacity in life sciences, like developmental psychology and neuroscience. Researchers will be able to use the developmental neuromorphic models to gain information and progress our understanding of human learning and intelligence. Biologically plausible simulations envisioned by this project will allow researchers to quickly collect information in support of novel experimental predictions before being tested on humans. Interestingly, it will be possible to lesion models to replicate cognitive dysfunctions to generate simulated information of the inner workings of the brain that cannot be discovered otherwise. This method would be useful for boosting the understanding of neurodevelopmental and learning disorders for the enhancement of their diagnosis and treatment.Ethical issues, lack of trust and prejudice of the public can result in the rejection of self-learning robots and negate the future socio-economic impact of this research.The envisioned humanization of the learning process will positively impact people's trust, acceptance, and adoption of robots in people lives. The new methodologies will enable intelligent robots to learn like humans, a new capability that will boost social applications by achieving the highest degree of personalisation, i.e. the needs and preferences of the teacher (user) can shape the artificial minds, making the interaction more natural and acceptable.To maximise the future social and economic impact, the ALDENS project will also regularly engage stakeholders in AI ethics and the public to receive discuss the research and get feedback on the definition of the ethical and legal boundaries for trust, safety, and wider acceptance.
该项目的目标是为机器人创造一个开放式的人工智能,使其能够像孩子一样成长-通过与人类和环境的多模式互动自主学习和发展新技能。这将实现人工智能和机器人技术的全球期望范式转变:从执行狭隘的预定义任务到自主的心理发展。为此,ALDENS将开创一种创新的跨学科方法,以生成具有实时发展的类人学习的交互式机器人模型,(神经形态)计算,这将超越目前主流深度学习方法的可能性。ALDENS项目将建立新的发展神经形态范式,一个超越个体范式限制的协同组合:发育机器人将为神经形态尖峰神经网络提供缺失的学习机制;同时,神经形态计算将提供高效的类脑资源,并准确表示真实的世界。具体而言,该项目的研究将创建和验证新的突破性方法,以构建自主,灵活和可扩展的人工大脑架构。这些将改变交互式机器人认知架构的设计。事实上,计划中的创新发展将为预期的范式转变铺平道路,并为下一代真正自主的机器人奠定基础,这些机器人能够以类似人类的方式进行推理、行为和互动。人类大脑研究建模的一个普遍风险因素是其功能组织和学习机制尚未完全理解。跨学科科学界对应该在人工代理中建模的基本结构和能力存在分歧。这使得这项研究具有不确定性,每个学科都有自己的“智力”观点;不同的实验程序和方法来解释结果。重要的是,新的发育神经形态模型将成为提高生命科学研究能力的有力工具,如发展心理学和神经科学。研究人员将能够使用发育神经形态模型来获取信息,并促进我们对人类学习和智力的理解。该项目设想的生物学上合理的模拟将使研究人员能够在人类身上进行测试之前快速收集支持新实验预测的信息。有趣的是,这将是可能的病变模型复制认知功能障碍,以产生模拟信息的内部运作的大脑,不能被发现,否则。这种方法将有助于提高对神经发育和学习障碍的理解,以加强其诊断和治疗。道德问题,缺乏信任和公众的偏见可能导致拒绝自我学习机器人,并否定这项研究的未来社会经济影响。所设想的学习过程的人性化将积极影响人们的信任,接受,以及机器人在人们生活中的应用。新方法将使智能机器人能够像人类一样学习,这一新能力将通过实现最高程度的个性化来促进社会应用,即教师(用户)的需求和偏好可以塑造人工思维,使互动更加自然和可接受。为了最大限度地提高未来的社会和经济影响,ALDENS项目还将定期与人工智能伦理领域的利益相关者和公众接触,以讨论研究,并就信任、安全和更广泛接受的伦理和法律的界限的定义获得反馈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Di Nuovo其他文献
The potential of robotics for the development and wellbeing of children with disabilities as we see it
我们认为机器人技术对于残疾儿童的发展和福祉的潜力
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.5
- 作者:
Renée J. F. van den Heuvel;Rianne Jansens;B. Littler;C. Huijnen;Alessandro Di Nuovo;Andrea Bonarini;L. Desideri;Pedro Encarnação;A. Lekova;L. D. de Witte - 通讯作者:
L. D. de Witte
Social Robots: A Promising Tool to Support People with Autism. A Systematic Review of Recent Research and Critical Analysis from the Clinical Perspective
- DOI:
10.1007/s40489-024-00434-5 - 发表时间:
2024-02-29 - 期刊:
- 影响因子:3.000
- 作者:
Roberto Vagnetti;Alessandro Di Nuovo;Monica Mazza;Marco Valenti - 通讯作者:
Marco Valenti
Instruments for Measuring Psychological Dimensions in Human-Robot Interaction: Systematic Review of Psychometric Properties
用于测量人机交互中心理维度的仪器:心理测量特性的系统综述
- DOI:
10.2196/55597 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Roberto Vagnetti;Nicola Camp;Matthew Story;Khaoula Ait-Belaid;Suvobrata Mitra;Massimiliano Zecca;Alessandro Di Nuovo;Daniele Magistro - 通讯作者:
Daniele Magistro
Mental practice and verbal instructions execution: A cognitive robotics study
心理练习和口头指令执行:认知机器人研究
- DOI:
10.1109/ijcnn.2012.6252751 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Alessandro Di Nuovo;D. Marocco;A. Cangelosi;V. M. De La Cruz;S. di Nuovo - 通讯作者:
S. di Nuovo
New Frontiers of Service Robotics for Active and Healthy Ageing
- DOI:
10.1007/s12369-016-0350-2 - 发表时间:
2016-05-03 - 期刊:
- 影响因子:3.700
- 作者:
Alessandro Di Nuovo;Frank Broz;Filippo Cavallo;Paolo Dario - 通讯作者:
Paolo Dario
Alessandro Di Nuovo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Di Nuovo', 18)}}的其他基金
I'M-ACTIVE : Intelligent Multimodal Assessment and Coaching Through Identification of Vulnerabilities in older pEople
IM-ACTIVE:通过识别老年人的脆弱性进行智能多模式评估和指导
- 批准号:
EP/W031809/1 - 财政年份:2023
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Number Understanding Modelling in Behavioural Embodied Robotic Systems
行为体现机器人系统中的数字理解建模
- 批准号:
EP/P030033/1 - 财政年份:2017
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Collision Avoidance System for Maritime Autonomous Surface Ship: Imitating and Surpassing Human Experts by Deep Inverse Reinforcement Learning
海上自主水面船舶防撞系统开发:通过深度逆强化学习模仿并超越人类专家
- 批准号:
22KJ2623 - 财政年份:2023
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of inverse reinforcement learning focusing on the multiobjective nature of humans and autonomous systems: towards zero risk and comfort maximization.
逆向强化学习的发展侧重于人类和自主系统的多目标性质:实现零风险和舒适度最大化。
- 批准号:
22H03665 - 财政年份:2022
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of "Japanese Pronunciation Laboratory" a pronunciation practice tool to support autonomous learning of Japanese language learners
开发支持日语学习者自主学习的发音练习工具“日语发音实验室”
- 批准号:
22K00648 - 财政年份:2022
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and practical research of a system to support autonomous learning using English videos and texts on the Web
支持网络英语视频和文本自主学习系统的开发和实践研究
- 批准号:
18K02881 - 财政年份:2018
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of autonomous-decentralized voltage control utilizing reinforcement learning in distribution network
在配电网中利用强化学习开发自主分散电压控制
- 批准号:
18K13747 - 财政年份:2018
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Material for English Tense, Aspect and Adverb --- A Hybrid Methodology for Autonomous Learning ---
英语时态、体和副词材料的开发 --- 自主学习的混合方法 ---
- 批准号:
17K02948 - 财政年份:2017
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gel Robotics with Machine Learning - Development of Autonomous 3D Printing and Scanning System
具有机器学习功能的凝胶机器人 - 自主 3D 打印和扫描系统的开发
- 批准号:
17H01224 - 财政年份:2017
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of a Cognitive Robot Powered by the Autonomous Learning Engine
开发由自主学习引擎驱动的认知机器人
- 批准号:
239050-2012 - 财政年份:2016
- 资助金额:
$ 25.76万 - 项目类别:
Discovery Grants Program - Individual
MRI: Development of an Autonomous, Connected and Data-Driven Vehicle for Multi-Disciplinary Research and Project-Based Learning
MRI:开发用于多学科研究和基于项目的学习的自主、互联和数据驱动的车辆
- 批准号:
1626236 - 财政年份:2016
- 资助金额:
$ 25.76万 - 项目类别:
Standard Grant
Development and Evaluation of Digital Teaching/Learning Materials Compatible With Multiple Devices to Promote English Language Autonomous Learning
兼容多种设备的数字教学/学习材料的开发和评估以促进英语语言自主学习
- 批准号:
15K16806 - 财政年份:2015
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)