Key-hole mining: engineering solutions towards zero-waste anodic electro-oxidation of green technology metals from sulphidic ores (ZERO-electro)

钥匙孔采矿:从硫化矿石中对绿色技术金属进行零废物阳极电氧化的工程解决方案(零电)

基本信息

  • 批准号:
    EP/X01858X/1
  • 负责人:
  • 金额:
    $ 25.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Metals are essential components of almost all modern technology. Amongst these are the emerging technologies on which we are depending to tackle the Climate Emergency: electric motors, batteries, transformers, photovoltaic panels and catalysts, just to name a few. Consequently, demand for 'green technology metals' (including Ni, Cu, Pd and Co) is surging, and is projected over the next 25 years, to eclipse the total for all previous human history. Recycling can only deliver a fraction of the supply. Even for metals such as Co, for which it is as high as 70%, it only accounts for 30% of demand. For metals which are more difficult to recycle, including Se, In and V, it remains <1%. It is therefore clear that the continued health and prosperity of both humankind and the natural environment depend on a huge increase in sustainable metal mining this Century.Despite such urgency, our methodology for the extraction of metals from the subsurface hasn't changed since the inception of metal mining which marked the beginning of the Bronze Age; we still "dig up" the raw materials. This results in environmental damage on a truly global scale. Therefore, whilst the metals extracted may be used to build 'green technologies' the nature of their extraction, via energy intensive digging, haulage and crushing, means that there is considerable "embedded carbon" in all metal products. This is hampering our ability to address the Climate Emergency. In fact, the situation is presently worsening, because as the near-surface ore deposits are being exhausted we are resorting to digging deeper into the subsurface (>1km depth in some cases) to reach them. The massive energy consumption involved is raising the degree of embedded carbon in humanity's metal supply, just at the time when we need urgently to reduce it. This is a global problem but also one which is important for the UK. Burgeoning demand for green technology metals coupled with various shifts in geopolitical conditions have dictated that metal mining is back on the UK political agenda. The prospect of a mining renaissance, however, has attracted scrutiny from the general public who have expressed concerns that it will compound and reproduce the social and ecological damage that has been associated with extractive activities in the past. Indeed, the high population density of the UK and Europe demands radical new thinking into what technology is appropriate for the extraction of our metal resources. We need radical new thinking in how we extract metals from the subsurface.This project seeks an entirely new approach to metal mining. In particular we will investigate the use of electricity and a suitable electrolyte (liquid that can carry dissolved metal ions) to decompose a metal-bearing ore deposit (to yield the desired metal) whilst it remains buried in the subsurface. Fundamental electrochemical theory suggests that this may be possible only using only a modest energy supply (i.e. of the same order of magnitude as can be supplied using a modest-sized array of solar panels). The metal laden electrolyte fluid will then be pumped to the surface. We anticipate that this new method would be particularly applicable for an important class of minerals that comprise metals bonded with reduced sulfur, known as the sulfides. These are noteworthy for their ability to conduct electricity, which is a critical requirement. The sulfides are widely regarded as the most important type of ore and currently supply approximately >80% of all Cu, >70% of all Co, >60% of all Ni, >95% of all Zn and >99% of all platinum group metals. This project will provide the fundamental "proof of concept" data for this radically new approach to metal mining. We anticipate several technical challenges, however if we are successful, then we could unlock an entirely new sustainable future.
金属是几乎所有现代技术的重要组成部分。这些是我们应对气候紧急情况所依赖的新兴技术:电动马达、电池、变压器、光伏电池板和催化剂,仅举几例。因此,对“绿色科技金属”(包括镍、铜、钯和钴)的需求正在激增,预计未来25年将超过人类历史上所有这些金属的总量。回收只能提供供应的一小部分。即使是像钴这样高达70%的金属,它也只占需求的30%。对于更难回收的金属,包括Se、In和V,它保持&lt;1%。因此,很明显,人类和自然环境的持续健康和繁荣依赖于本世纪可持续金属开采的巨大增长。尽管如此紧迫,但自标志着青铜时代开始的金属开采开始以来,我们从地下提取金属的方法没有改变;我们仍然“挖掘”原材料。这导致了真正的全球范围内的环境破坏。因此,虽然提取的金属可用于建立“绿色技术”,但其提取的性质,通过能源密集型的挖掘、运输和粉碎,意味着在所有金属产品中都有相当大的“嵌入碳”。这阻碍了我们应对气候紧急情况的能力。事实上,情况目前正在恶化,因为随着近地表矿藏的枯竭,我们正求助于更深的地下挖掘(在某些情况下为1公里深)。所涉及的大量能源消耗正在提高人类金属供应中碳的嵌入程度,而此时我们正迫切需要减少碳供应。这是一个全球性的问题,但对英国来说也很重要。对绿色科技金属的需求迅速增长,加上地缘政治条件的各种变化,决定了金属开采重新被提上英国的政治议程。然而,矿业复兴的前景引起了公众的密切关注,他们表示担心,这将加剧并复制过去与采掘活动相关的社会和生态破坏。事实上,英国和欧洲的高人口密度要求我们对什么技术适合开采我们的金属资源进行激进的新思考。在如何从地下提取金属方面,我们需要彻底的新思维。这个项目寻求一种全新的金属开采方法。特别是,我们将研究使用电流和合适的电解液(可以携带溶解的金属离子的液体)来分解含金属的矿藏(以产生所需的金属),同时将其埋藏在地下。基本的电化学理论表明,这可能只使用适度的能源供应(即与使用中等尺寸的太阳能电池板阵列可以提供的数量级相同)。然后,将含有金属的电解液泵送到地面。我们预计,这种新方法将特别适用于一类重要的矿物,这些矿物包含以还原硫结合的金属,即所谓的硫化物。值得注意的是它们的导电能力,这是一项关键的要求。硫化物被广泛认为是最重要的矿石类型,目前供应约80%的铜,70%的钴,60%的镍,95%的锌和99%的铂族金属。该项目将为这种全新的金属开采方法提供基本的“概念验证”数据。我们预计会有几个技术挑战,但如果我们成功了,我们就可以开启一个全新的可持续未来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Crane其他文献

Editorial: Resource Recovery From Waste
社论:废物资源回收
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    A. Lag;A. Velenturf;Richard Crane;I. Head;P. Purnell;K. Semple
  • 通讯作者:
    K. Semple
Altered transmission of maternal angiotensin II receptor haplotypes in fetal growth restriction
胎儿生长受限时母体血管紧张素 II 受体单倍型传递的改变
  • DOI:
    10.1002/humu.20265
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    C. Tower;S. Chappell;Meera Acharya;Richard Crane;S. Szolin;L. Symonds;Helen Chevins;N. Kalsheker;P. Baker;L. Morgan
  • 通讯作者:
    L. Morgan
Removal of vanadium(V) ions from acidic water using reusable manganese oxide sorbents
使用可重复使用的氧化锰吸附剂从酸性水中去除钒(V)离子
  • DOI:
    10.1016/j.jhazmat.2025.137765
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Peirou Li;Laura Newsome;Arthur Graf;Karen A. Hudson-Edwards;David Morgan;Richard Crane
  • 通讯作者:
    Richard Crane

Richard Crane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

响应磁场解锁纤维蛋白“knob-hole杵臼结构”的新型载药纳米粒子用于溶栓治疗的研究
  • 批准号:
    32000948
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于Bump-Hole化学遗传学技术的βIII微管蛋白的功能研究
  • 批准号:
    21907005
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
HOLE基因在肺癌发生中的作用
  • 批准号:
    2018JJ2666
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
卤键、π-hole键功能化固相萃取吸附剂的设计、合成及其在生物体内多环芳烃DNA加合物检测中的应用
  • 批准号:
    81502851
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
  • 批准号:
    DP240102970
  • 财政年份:
    2024
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Discovery Projects
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Research Grant
Woods Hole Center for Oceans and Human Health
伍兹霍尔海洋与人类健康中心
  • 批准号:
    2418297
  • 财政年份:
    2024
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Continuing Grant
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Continuing Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
  • 批准号:
    2313654
  • 财政年份:
    2023
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Standard Grant
The Seventeenth (17th) Graduate Climate Conference (GCC); Woods Hole, Massachusetts; November 2-4, 2023
第十七届(17th)气候研究生会议(GCC);
  • 批准号:
    2327558
  • 财政年份:
    2023
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Reverberation Mapping with Multi-Object Spectroscopy - from Sloan Digital Sky Survey Reverberation Mapping to the Black Hole Mapper
合作研究:使用多目标光谱进行混响映射 - 从斯隆数字巡天混响映射到黑洞映射器
  • 批准号:
    2310211
  • 财政年份:
    2023
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Standard Grant
CAREER: Direct Tests of Black Hole Accretion Rate Prescriptions
职业:黑洞吸积率处方的直接测试
  • 批准号:
    2239807
  • 财政年份:
    2023
  • 资助金额:
    $ 25.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了