Key-hole mining: engineering solutions towards zero-waste anodic electro-oxidation of green technology metals from sulphidic ores (ZERO-electro)
钥匙孔采矿:从硫化矿石中对绿色技术金属进行零废物阳极电氧化的工程解决方案(零电)
基本信息
- 批准号:EP/X01858X/1
- 负责人:
- 金额:$ 25.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metals are essential components of almost all modern technology. Amongst these are the emerging technologies on which we are depending to tackle the Climate Emergency: electric motors, batteries, transformers, photovoltaic panels and catalysts, just to name a few. Consequently, demand for 'green technology metals' (including Ni, Cu, Pd and Co) is surging, and is projected over the next 25 years, to eclipse the total for all previous human history. Recycling can only deliver a fraction of the supply. Even for metals such as Co, for which it is as high as 70%, it only accounts for 30% of demand. For metals which are more difficult to recycle, including Se, In and V, it remains <1%. It is therefore clear that the continued health and prosperity of both humankind and the natural environment depend on a huge increase in sustainable metal mining this Century.Despite such urgency, our methodology for the extraction of metals from the subsurface hasn't changed since the inception of metal mining which marked the beginning of the Bronze Age; we still "dig up" the raw materials. This results in environmental damage on a truly global scale. Therefore, whilst the metals extracted may be used to build 'green technologies' the nature of their extraction, via energy intensive digging, haulage and crushing, means that there is considerable "embedded carbon" in all metal products. This is hampering our ability to address the Climate Emergency. In fact, the situation is presently worsening, because as the near-surface ore deposits are being exhausted we are resorting to digging deeper into the subsurface (>1km depth in some cases) to reach them. The massive energy consumption involved is raising the degree of embedded carbon in humanity's metal supply, just at the time when we need urgently to reduce it. This is a global problem but also one which is important for the UK. Burgeoning demand for green technology metals coupled with various shifts in geopolitical conditions have dictated that metal mining is back on the UK political agenda. The prospect of a mining renaissance, however, has attracted scrutiny from the general public who have expressed concerns that it will compound and reproduce the social and ecological damage that has been associated with extractive activities in the past. Indeed, the high population density of the UK and Europe demands radical new thinking into what technology is appropriate for the extraction of our metal resources. We need radical new thinking in how we extract metals from the subsurface.This project seeks an entirely new approach to metal mining. In particular we will investigate the use of electricity and a suitable electrolyte (liquid that can carry dissolved metal ions) to decompose a metal-bearing ore deposit (to yield the desired metal) whilst it remains buried in the subsurface. Fundamental electrochemical theory suggests that this may be possible only using only a modest energy supply (i.e. of the same order of magnitude as can be supplied using a modest-sized array of solar panels). The metal laden electrolyte fluid will then be pumped to the surface. We anticipate that this new method would be particularly applicable for an important class of minerals that comprise metals bonded with reduced sulfur, known as the sulfides. These are noteworthy for their ability to conduct electricity, which is a critical requirement. The sulfides are widely regarded as the most important type of ore and currently supply approximately >80% of all Cu, >70% of all Co, >60% of all Ni, >95% of all Zn and >99% of all platinum group metals. This project will provide the fundamental "proof of concept" data for this radically new approach to metal mining. We anticipate several technical challenges, however if we are successful, then we could unlock an entirely new sustainable future.
金属是几乎所有现代技术的基本组成部分。其中包括我们应对气候紧急情况所依赖的新兴技术:电动机、电池、变压器、光伏板和催化剂,仅举几例。因此,对“绿色技术金属”(包括镍、铜、钯和钴)的需求正在激增,预计在未来25年内,将超过人类历史上的总量。回收只能提供一小部分的供应。即使是钴这样的金属,其需求量高达70%,也只占需求量的30%。对于更难回收的金属,包括Se、In和V,其保持<1%。因此,很明显,人类和自然环境的持续健康和繁荣取决于本世纪可持续金属开采的巨大增长。尽管如此紧迫,我们从地下提取金属的方法自金属开采开始以来一直没有改变,这标志着青铜时代的开始;我们仍然“挖掘”原材料。这导致了真正全球范围的环境破坏。因此,虽然提取的金属可用于构建“绿色技术”,但通过能源密集型挖掘、运输和破碎进行提取的性质意味着所有金属产品中都有相当多的“嵌入碳”。这阻碍了我们应对气候紧急情况的能力。事实上,目前的情况正在恶化,因为近地表的矿床正在枯竭,我们不得不向地下更深的地方挖掘(在某些情况下深度超过1公里)以达到这些矿床。大量的能源消耗正在提高人类金属供应中的碳含量,而此时我们迫切需要减少碳含量。这是一个全球性的问题,但对英国来说也很重要。对绿色技术金属的需求不断增长,加上地缘政治条件的各种变化,使得金属开采重新回到了英国的政治议程上。然而,采矿业复兴的前景引起了公众的密切关注,他们担心这将加剧和重现过去与采掘活动有关的社会和生态损害。事实上,英国和欧洲的高人口密度要求我们对什么样的技术适合我们的金属资源进行彻底的新思维。在如何从地下提取金属方面,我们需要全新的思维。该项目寻求一种全新的金属开采方法。特别是,我们将研究使用电力和合适的电解质(液体,可以携带溶解的金属离子)分解含金属的矿石存款(以产生所需的金属),而它仍然埋在地下。基本电化学理论表明,这可能仅使用适度的能量供应(即,与使用中等大小的太阳能电池板阵列可以供应的数量级相同)是可能的。然后将载有金属的电解质流体泵送到表面。我们预计,这种新方法将特别适用于一类重要的矿物,包括与还原硫结合的金属,称为硫化物。它们值得注意的是它们的导电能力,这是一个关键的要求。硫化物被广泛认为是最重要的矿石类型,并且目前供应约>80%的所有Cu、>70%的所有Co、>60%的所有Ni、>95%的所有Zn和>99%的所有铂族金属。该项目将为这种全新的金属采矿方法提供基本的“概念验证”数据。我们预计会遇到一些技术挑战,但如果我们成功了,那么我们就可以开启一个全新的可持续未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Crane其他文献
Editorial: Resource Recovery From Waste
社论:废物资源回收
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
A. Lag;A. Velenturf;Richard Crane;I. Head;P. Purnell;K. Semple - 通讯作者:
K. Semple
Altered transmission of maternal angiotensin II receptor haplotypes in fetal growth restriction
胎儿生长受限时母体血管紧张素 II 受体单倍型传递的改变
- DOI:
10.1002/humu.20265 - 发表时间:
2006 - 期刊:
- 影响因子:3.9
- 作者:
C. Tower;S. Chappell;Meera Acharya;Richard Crane;S. Szolin;L. Symonds;Helen Chevins;N. Kalsheker;P. Baker;L. Morgan - 通讯作者:
L. Morgan
Removal of vanadium(V) ions from acidic water using reusable manganese oxide sorbents
使用可重复使用的氧化锰吸附剂从酸性水中去除钒(V)离子
- DOI:
10.1016/j.jhazmat.2025.137765 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:11.300
- 作者:
Peirou Li;Laura Newsome;Arthur Graf;Karen A. Hudson-Edwards;David Morgan;Richard Crane - 通讯作者:
Richard Crane
Richard Crane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
响应磁场解锁纤维蛋白“knob-hole杵臼结构”的新型载药纳米粒子用于溶栓治疗的研究
- 批准号:32000948
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于Bump-Hole化学遗传学技术的βIII微管蛋白的功能研究
- 批准号:21907005
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
HOLE基因在肺癌发生中的作用
- 批准号:2018JJ2666
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
卤键、π-hole键功能化固相萃取吸附剂的设计、合成及其在生物体内多环芳烃DNA加合物检测中的应用
- 批准号:81502851
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
- 批准号:
DP240102970 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Discovery Projects
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Research Grant
Woods Hole Center for Oceans and Human Health
伍兹霍尔海洋与人类健康中心
- 批准号:
2418297 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Continuing Grant
Numerical investigations of the inner regions of black hole accretion discs
黑洞吸积盘内部区域的数值研究
- 批准号:
2738304 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Studentship
Simulations of neutron star-black hole mergers
中子星-黑洞合并的模拟
- 批准号:
2789433 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Studentship
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
- 批准号:
EP/X039757/1 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Research Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
- 批准号:
2313654 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 25.72万 - 项目类别:
Standard Grant














{{item.name}}会员




