Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity

全息术中的混沌和粗粒度:迈向量子引力的新范式

基本信息

  • 批准号:
    EP/X030334/1
  • 负责人:
  • 金额:
    $ 164.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

A new paradigm is emerging for black holes in quantum gravity. It is inspired by the general framework of gauge/gravity duality ('holography'), which allows for a consistent definition of quantum gravity in terms of dual non-gravitational quantum many-body systems. More concretely, the new paradigm will be rooted in an acceleration of developments in recent years due to: (i) the incorporation of quantum information theoretic concepts and methods into the way we use the holographic duality, and (ii) the discovery of new models of the duality which are unprecedentedly simple to study but nevertheless exhibit the key features of interest in quantum gravity. Armed with these powerful new tools, a consistent theory of quantum black holes is now within reach. Central objectives of my proposal are: (*) Develop a comprehensive and unifying theory of thermalization, dissipation, chaos, and randomness in quantum black holes and their dual many-body systems. (*) Determine the fate of fundamental quantum field theory constraints (unitarity, analyticity, thermality constraints,...) under the duality map and in quantum gravity. (*) Find a detailed model of black hole interiors in terms of degrees of freedom in the dual system. Work packages include investigations of quantum chaos in conformal and in disordered systems, the role of ensemble averages in quantum gravity, and an effective description of fluctuating black holes in the context of hydrodynamics. My methodology is tailored to synergize the unique combination of expertise in gravity, quantum field theory, and non-equilibrium dynamics that I have established: I will use a symmetry-based approach and effective field theory methods to make crucial aspects of the duality manifest in a unifying, general, and computationally efficient fashion. My approach is designed to identify universal aspects of quantum gravity and will thus lead to new insights that are generalizable beyond the context of the duality and even in cosmology.
量子引力中黑洞的新范式正在出现。它受到规范/重力二象性(“全息”)的一般框架的启发,它允许在双非引力量子多体系统方面对量子引力进行一致的定义。更具体地说,新范式将植根于近年来的加速发展,因为:(i)将量子信息理论的概念和方法纳入我们使用全息二象性的方式,以及(ii)发现新的二象性模型,这些模型的研究前所未有地简单,但仍然表现出对量子引力感兴趣的关键特征。有了这些强大的新工具,一个一致的量子黑洞理论就指日可待了。我的建议的中心目标是:(*)在量子黑洞及其双多体系统中建立一个全面和统一的热化、耗散、混沌和随机性理论。(*)确定对偶映射和量子引力下基本量子场论约束(统一性、解析性、热性约束等)的命运。(*)根据双系统的自由度找到黑洞内部的详细模型。工作包包括研究保形和无序系统中的量子混沌,量子引力中系综平均的作用,以及流体力学背景下波动黑洞的有效描述。我的方法是量身定制的,以协同我所建立的重力,量子场论和非平衡动力学方面的专业知识的独特组合:我将使用基于对称性的方法和有效的场论方法,以统一,一般和计算效率的方式使二元性的关键方面显现出来。我的方法旨在确定量子引力的普遍方面,从而导致超越二元性甚至宇宙学背景的新见解。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Euclidean wormholes in two-dimensional conformal field theories from quantum chaos and number theory
量子混沌和数论中的二维共形场论中的欧几里得虫洞
  • DOI:
    10.1103/physrevd.108.l101902
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Haehl F
  • 通讯作者:
    Haehl F
Operator growth and black hole formation
算子增长和黑洞形成
Effective description of sub-maximal chaos: stringy effects for SYK scrambling
次极大混沌的有效描述:SYK置乱的弦效应
Symmetries and spectral statistics in chaotic conformal field theories. Part II. Maass cusp forms and arithmetic chaos
混沌共形场论中的对称性和谱统计。
Symmetries and spectral statistics in chaotic conformal field theories
混沌共形场论中的对称性和谱统计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Felix Haehl其他文献

Felix Haehl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Felix Haehl', 18)}}的其他基金

Chaos, Randomness, Coarse-Graining: Towards a New Paradigm for Holography
混沌、随机性、粗粒度:走向全息术的新范式
  • 批准号:
    ST/W003546/1
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Fellowship

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Continuing Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
  • 批准号:
    2310746
  • 财政年份:
    2023
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Continuing Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
  • 批准号:
    23KJ0732
  • 财政年份:
    2023
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theory and Application of Coarse Graining
粗粒度理论与应用
  • 批准号:
    RGPIN-2021-03852
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Discovery Grants Program - Individual
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
  • 批准号:
    22K03596
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
  • 批准号:
    22K13974
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CDS&E: AI-RHEO: Learning coarse-graining of complex fluids
CDS
  • 批准号:
    2204226
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Standard Grant
Rigorous coarse-graining of defects at positive temperature
正温度下缺陷的严格粗晶化
  • 批准号:
    EP/W008041/1
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Research Grant
Chaos, Randomness, Coarse-Graining: Towards a New Paradigm for Holography
混沌、随机性、粗粒度:走向全息术的新范式
  • 批准号:
    ST/W003546/1
  • 财政年份:
    2022
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Fellowship
Frontiers of Coarse-graining
粗粒度的前沿
  • 批准号:
    2102677
  • 财政年份:
    2021
  • 资助金额:
    $ 164.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了