Rigorous coarse-graining of defects at positive temperature
正温度下缺陷的严格粗晶化
基本信息
- 批准号:EP/W008041/1
- 负责人:
- 金额:$ 4.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The procedure of approximating a large and complex system by a simpler and lower dimensional one is referred to as coarse-graining or model-reduction, and the variables in the reduced model are called coarse-grained or collective variables. Crystalline materials contain a variety of defects such as vacancies, interstitials and dislocations. Macroscopic properties of materials are strongly determined by interactions between dislocations and other defects. Because the defect scale is vastly smaller than the macroscopic scale, trustworthy coarse-grained models are necessary for control and design of material properties. Recently, the GENERIC (General Equation for Non-Equilibrium Reversible and Irreversible Coupling) framework has been employed to derive the collective dynamics of dislocations. However, a mathematically rigorous validation of the GENERIC framework is still lacking; this raises questions about the reliability of the method and limits its application. Making this formal derivation precise is challenging because of its nonlinear and singular nature and is currently of fundamental interest to both mathematicians and physicists.The aim of this project is to provide a rigorous derivation of coarse-graining of defects at positive temperature. This will contribute to significant understanding of the GENERIC framework, thus opening the doors to other generalisations.The proposed research will combine methodology and techniques from analysis, statistical mechanics and probability theory in novel ways. Therefore, it is expected that the proposal will strengthen and create new connections between these areas of mathematics. Furthermore, by developing quantitative, error controllable methods, the outcome of the proposal will provide the analytical foundations for a rigorous derivation of coarse-grained models, and of numerical and multi-scale schemes at positive temperature which at present largely lack the solid foundations. In the long-term, the outcome of this project will help us to understand better the deformation behaviour of materials.
用一个更简单的低维系统来逼近一个大而复杂的系统的过程称为粗粒度化或模型约简,而约简模型中的变量称为粗粒度化或集合变量。晶体材料含有各种缺陷,如空位、间隙和位错。材料的宏观性能在很大程度上取决于位错和其他缺陷之间的相互作用。由于缺陷尺度远小于宏观尺度,因此需要可靠的粗粒度模型来控制和设计材料性能。近年来,采用非平衡可逆与不可逆耦合的一般方程框架来推导位错的集体动力学。然而,仍然缺乏对GENERIC框架的数学上严格的验证;这引起了对该方法可靠性的质疑,并限制了其应用。由于其非线性和奇异性,使这种形式推导精确是具有挑战性的,并且目前是数学家和物理学家的基本兴趣。这个项目的目的是提供一个严格的推导粗粒化缺陷在正温度。这将有助于对GENERIC框架的重要理解,从而为其他一般化打开大门。建议的研究将以新颖的方式结合分析,统计力学和概率论的方法和技术。因此,预计该提案将加强并在这些数学领域之间建立新的联系。此外,通过发展定量的、误差可控的方法,该建议的结果将为粗粒度模型的严格推导以及目前在很大程度上缺乏坚实基础的正温度下的数值和多尺度方案提供分析基础。从长远来看,这个项目的成果将帮助我们更好地理解材料的变形行为。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Operator-splitting schemes for degenerate, non-local, conservative-dissipative systems
简并、非局域、保守耗散系统的算子分割方案
- DOI:10.3934/dcds.2022109
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Adams D
- 通讯作者:Adams D
Entropic Regularization of NonGradient Systems
非梯度系统的熵正则化
- DOI:10.1137/21m1414668
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Adams D
- 通讯作者:Adams D
Model reduction of Brownian oscillators: quantification of errors and long-time behavior
- DOI:10.1088/1751-8121/ace948
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:M. Colangeli;M. H. Duong;A. Muntean
- 通讯作者:M. Colangeli;M. H. Duong;A. Muntean
Reducing exit-times of diffusions with repulsive interactions
通过排斥相互作用减少扩散的退出时间
- DOI:10.1051/ps/2023012
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chaudru De Raynal P
- 通讯作者:Chaudru De Raynal P
A reduction scheme for coupled Brownian harmonic oscillators
耦合布朗谐振子的简化方案
- DOI:10.1088/1751-8121/acab41
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Colangeli M
- 通讯作者:Colangeli M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Duong其他文献
Hong Duong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Duong', 18)}}的其他基金
Variational structures, convergence to equilibrium and multiscale analysis for non-Markovian systems
非马尔可夫系统的变分结构、均衡收敛和多尺度分析
- 批准号:
EP/V038516/1 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Research Grant
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory and Application of Coarse Graining
粗粒度理论与应用
- 批准号:
RGPIN-2021-03852 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Discovery Grants Program - Individual
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
- 批准号:
22K03596 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
- 批准号:
22K13974 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: AI-RHEO: Learning coarse-graining of complex fluids
CDS
- 批准号:
2204226 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
Chaos, Randomness, Coarse-Graining: Towards a New Paradigm for Holography
混沌、随机性、粗粒度:走向全息术的新范式
- 批准号:
ST/W003546/1 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Fellowship
Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity
全息术中的混沌和粗粒度:迈向量子引力的新范式
- 批准号:
EP/X030334/1 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Research Grant