MSKDamage - Image-driven damage characterisation of musculoskeletal tissues for in silico medicine

MSKDamage - 用于计算机医学的肌肉骨骼组织的图像驱动损伤表征

基本信息

  • 批准号:
    EP/X032183/1
  • 负责人:
  • 金额:
    $ 237.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In the UK, musculoskeletal disorders (joint and back problems) affect one in five people long term. While joint replacements are successful, they are challenged by demands of an active and younger population presenting with disorders due to trauma, obesity, or other lifestyle choices. One of the causes for joint and back pain is the deterioration of the different soft tissues acting as cushions in the joints. New surgical interventions are being developed to repair or locally replace those soft tissues in order to delay or prevent a total joint replacement. There is no clear indication yet on which patients benefit the most from them. There is an urgent need to define the type of patients for which new and existing interventions are most beneficial. The local anatomy or level of tissue deterioration differs greatly between patients, and there is currently a lack of biomechanical evidence that takes into account these large variations to help matching patients to interventions. To tackle these issues, this Fellowship, MSKDamage, will develop novel testing methods and tools combining laboratory simulation with computer modelling and imaging. MSKDamage methods will be used to predict the variation in the mechanical performance of a series of treatments at various levels of joint deterioration. This will enable the different interventions to be matched to different patient's characteristics. I will focus on three musculoskeletal disorders and associated repairs:1. Emerging treatments involving the injection of biomaterials in the intervertebral disc: I will produce realistic testing conditions that can be personalised to a specific patient, assessing each patient's chance of success and identifying areas for treatment optimisation.2. Evaluation of meniscus repairs in the knee and their interaction with cartilage defects: I will provide new information on the type of cartilage defect that reduces the chances of success of a meniscus replacement in the knee. The research will develop guidance on the type of cartilage defects that need repair for a meniscus replacement to be successful.3. Optimisation of custom wrist repair: I will help optimise patient-specific wrist repairs so that they reduce the damage in tendons and ligaments in the wrist.MSKDamage builds on my strong track-record in the field and network of industry, clinical and academic collaborators, as well as my recent work that demonstrates the specific information which need to be included in models of degraded tissues in the spine and the knee. MSKDamage aims to (1) develop a methodology to test interventions for a specific patient and its specific tissue degradation, (2) carry out a series of case studies which demonstrate the capacity to test a range tissues disorders and repairs. This work is a particularly suitable for a Fellowship, as it will allow me to develop fundamental engineering tools and methods while engaging with end users for significant economic and societal impact. I will also develop as a leader in the field, leading a growing research group and taking actions for the research community, directly related to the research, with advocacy on sharing more research outcomes openly for creation of more impact, and indirectly related to act as an ambassador for public and patient involvement for research related to computer simulations in healthcare.
在英国,肌肉骨骼疾病(关节和背部问题)长期影响五分之一的人。虽然关节置换术是成功的,但由于创伤、肥胖或其他生活方式选择而出现疾病的活跃和年轻人群的需求,它们受到挑战。关节和背部疼痛的原因之一是作为关节中的缓冲垫的不同软组织的恶化。正在开发新的外科干预措施来修复或局部替换这些软组织,以延迟或防止全关节置换。目前还没有明确的迹象表明哪些患者从中受益最大。目前迫切需要确定新的和现有的干预措施最有益的患者类型。患者之间的局部解剖结构或组织恶化程度差异很大,目前缺乏生物力学证据来考虑这些大的变化,以帮助患者匹配干预措施。为了解决这些问题,这项研究金,MSKDamage,将开发新的测试方法和工具,结合实验室模拟与计算机建模和成像。MSK损伤方法将用于预测不同关节退化水平下一系列治疗的机械性能变化。这将使不同的干预措施能够与不同患者的特征相匹配。我将重点介绍三种肌肉骨骼疾病和相关的修复:1。新兴的治疗方法包括在椎间盘中注射生物材料:我将为特定患者提供可个性化的现实测试条件,评估每位患者的成功机会并确定治疗优化区域。2.评估膝关节半月板修复及其与软骨缺损的相互作用:我将提供有关软骨缺损类型的新信息,这些软骨缺损类型降低了膝关节半月板置换术的成功机会。这项研究将为成功进行半月板置换术所需修复的软骨缺损类型提供指导。优化定制的腕关节修复:我将帮助优化患者特定的腕关节修复,以减少腕关节肌腱和韧带的损伤。MSKDamage建立在我在该领域的良好记录和行业,临床和学术合作者的网络,以及我最近的工作,证明需要包括在脊柱和膝关节退化组织模型中的特定信息。MSKDamage旨在(1)开发一种方法来测试针对特定患者及其特定组织降解的干预措施,(2)进行一系列案例研究,以证明测试一系列组织疾病和修复的能力。这项工作特别适合奖学金,因为它将使我能够开发基本的工程工具和方法,同时与最终用户接触,产生重大的经济和社会影响。我还将发展成为该领域的领导者,领导一个不断壮大的研究小组,并为研究界采取行动,直接与研究有关,倡导公开分享更多的研究成果,以创造更多的影响,间接与作为公众和患者参与与医疗保健计算机模拟相关的研究的大使有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marlène Mengoni其他文献

257 - ASSESSMENT OF FLUID INGRESS INTO THE GRAFT-HOST INTERFACE OF OSTEOCHONDRAL GRAFTS IN THE KNEE, USING AN OVINE MODEL
257 - 利用绵羊模型评估膝关节骨软骨移植物的移植物-宿主界面的液体侵入情况
  • DOI:
    10.1016/j.joca.2025.02.260
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Lara S. Esquivel;Gavin Day;Marlène Mengoni;Hazel Fermor;Ruth Wilcox
  • 通讯作者:
    Ruth Wilcox

Marlène Mengoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marlène Mengoni', 18)}}的其他基金

Spinal facet joints: biomechanical evaluation for improved interventions
脊柱小关节:生物力学评估以改进干预措施
  • 批准号:
    EP/W015617/1
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Research Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome
肾移植活检的计算图像分析以预测移植结果
  • 批准号:
    10733292
  • 财政年份:
    2023
  • 资助金额:
    $ 237.85万
  • 项目类别:
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
  • 批准号:
    23K11121
  • 财政年份:
    2023
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SenseAI - AI-driven compressed image acquisition
SenseAI - AI驱动的压缩图像采集
  • 批准号:
    10089458
  • 财政年份:
    2023
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Collaborative R&D
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Standard Grant
SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
  • 批准号:
    2312487
  • 财政年份:
    2023
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Standard Grant
A unifying approach to machine learning driven medical image segmentation
机器学习驱动的医学图像分割的统一方法
  • 批准号:
    RGPIN-2022-05117
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Discovery Grants Program - Individual
A unifying approach to machine learning driven medical image segmentation
机器学习驱动的医学图像分割的统一方法
  • 批准号:
    DGECR-2022-00137
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Discovery Launch Supplement
Non-invasive, image-based, in-vivo assessment of tumor hypoxia to guide hypoxia-driven adaptive radiation therapy
对肿瘤缺氧进行非侵入性、基于图像的体内评估,以指导缺氧驱动的适应性放射治疗
  • 批准号:
    10661802
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
  • 批准号:
    10608711
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
Development of an image reconstruction method for the data driven SPECT system with deep learning
开发基于深度学习的数据驱动 SPECT 系统的图像重建方法
  • 批准号:
    22K12874
  • 财政年份:
    2022
  • 资助金额:
    $ 237.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了