Field Computation Based Kernel for Vector 3D Printing
基于现场计算的矢量 3D 打印内核
基本信息
- 批准号:EP/X032213/1
- 负责人:
- 金额:$ 210.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Although additive manufacturing is called 3D printing, the fabrication in most cases is still in a 2.5D way - materials are accumulated layer upon layer in planes along a fixed printing direction, restricting the flexibility of 3DP. The commonly identified problems of the current 2.5D printing practice are i) weak mechanical strength between the layers of materials, ii) additional supporting structures that are hard to remove and lead to the waste of material and fabrication time, iii) staircase appearance on the surface of printed models. Moreover, this planar fabrication also forbids printing anisotropically strong materials such as carbon fibres along designed paths like "tendons in muscles" to reinforce the mechanical strength or printing on top of curved surfaces for advanced electrical / biological functions. All restrict the fast growth of 3DP technology.These limitations can be overcome by the strategy of Vector 3D Printing (Vec3DP) that extrudes materials along dynamically varied directions. Adding more Degrees-of-Freedom (DoFs) onto the 3D printer and controlling its multi-axis motion is less difficult to implement on hardware. Robotic arms for welding or advanced multi-axis milling machines have already realised this sort of motion. However, the state-of-the-art lacks a computational kernel to effectively generate optimised toolpaths / motions of Vec3DP for models with complex geometry and material distribution although there are some pilot works that can produce relatively simple models. This gap of computational kernel further prohibits the upstream investigation of design for Vec3DP and the downstream applications for Vec3DP. My group is the first in the world that invents the technology for automatically generating manufacturable curved 3D toolpaths to fabricate a general solid model through the multi-axis motion of a robotic system. To secure our leading position at the vanguard of this engineering frontier, my ambition of this fellowship is to investigate and develop a computational kernel to enable the integrated design and manufacturing for vector 3D printing as the next generation of additive manufacturing. Investigating such a kernel for Vec3DP has the following scientific challenges:1) The search space for optimal solutions has been extended from two-manifold (planar layers for conventional 3DP or given surfaces for multi-axis CNC) into three-manifold (volume). This change from plane / surface to volume tremendously increases both the degrees-of-freedom (DoFs) and the complexity of problems.2) Decoupled optimization conducted in different phases of design, planning and manufacturing realisation cannot solve the problem systematically. This leads to a consequence that the products optimised in the design phase cannot be successfully realised in the manufacturing phase. This is a challenge for both conventional 3DP and vector 3DP; however, vector 3DP has more complicated manufacturing objectives / constraints to be considered.3) A whole pipeline optimisation needs to compute the derivatives of objectives, constraints, material models, and other operations with respect to the design variables (i.e., sensitivities), where topological changes (e.g., mesh generation, Boolean operations on B-reps) are not differentiable. This restricts the usage of derivative-based optimisers, including neural network based deep-learning that relies on differentiation in back-propagation.I envision that all these challenges can be overcome by investigating a field-based computational kernel to tackle the design and manufacturing problems for Vec3DP.
虽然加法制造被称为3D打印,但在大多数情况下,制造仍然是2.5D的方式-材料沿着固定的打印方向在平面上层层堆积,限制了3DP的灵活性。目前2.5D打印实践中常见的问题是:i)材料层之间的机械强度较低,ii)难以拆卸的额外支撑结构,导致材料和制造时间的浪费,iii)打印模型表面出现楼梯。此外,这种平面制造还禁止沿着设计的路径打印各向异性坚固的材料,如碳纤维,以增强机械强度或在曲面上打印,以实现先进的电气/生物功能。所有这些都限制了3DP技术的快速发展,这些限制可以通过沿动态变化方向挤压材料的矢量3D打印(Vec3DP)策略来克服。在3D打印机上添加更多自由度(DoF)并控制其多轴运动在硬件上实现的难度较小。用于焊接的机械臂或先进的多轴铣床已经实现了这种运动。然而,尽管有一些试点工作可以生成相对简单的模型,但最先进的计算核心缺乏有效地为具有复杂几何和材料分布的模型生成优化的Vec3DP刀具路径/运动的计算内核。计算内核的这一差距进一步阻碍了对Vec3DP设计的上游研究和Vec3DP的下游应用。我的团队是世界上第一个发明自动生成可制造的曲面3D刀具路径的技术的团队,通过机器人系统的多轴运动来制造通用实体模型。为了确保我们在这一工程前沿领域的领先地位,我的抱负是研究和开发一种计算内核,使矢量3D打印作为下一代加法制造的集成设计和制造成为可能。研究Vec3DP的这种核具有以下科学挑战:1)搜索最优解的空间已经从两个流形(传统3DP的平面层或多轴数控的给定曲面)扩展到三个流形(体积)。这种从平面/曲面到体积的变化极大地增加了自由度(DoF)和问题的复杂性。2)在设计、规划和制造实现的不同阶段进行的解耦优化无法系统地解决问题。这导致在设计阶段优化的产品不能在制造阶段成功实现。这对传统的3DP和矢量3DP都是一个挑战;然而,矢量3DP有更复杂的制造目标/约束需要考虑。3)整个管线优化需要计算目标、约束、材料模型和其他操作相对于设计变量的导数(即灵敏度),其中拓扑变化(例如,网格生成、对B-Rep的布尔操作)不可微。这限制了基于导数的优化器的使用,包括基于神经网络的深度学习,它依赖于反向传播中的差异。我预计,通过研究基于场的计算内核来解决Vec3DP的设计和制造问题,所有这些挑战都可以克服。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changling Charlie Wang其他文献
Changling Charlie Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changling Charlie Wang', 18)}}的其他基金
SORO-MADE: Soft Robotic Mannequin with Programmable Shape Deformation
SORO-MADE:具有可编程形状变形的软机器人人体模型
- 批准号:
EP/W024985/1 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Research Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
- 批准号:
2133757 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Standard Grant
Edge Bundling and Node Layout by evoluational computation based on aethentic value
基于价值的进化计算的边缘捆绑和节点布局
- 批准号:
22K12116 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic computation for differential equation based systems
基于微分方程的系统的符号计算
- 批准号:
2744977 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Studentship
NSF Convergence Accelerator Track G: Privacy-preserving Intrusion-resilient Secure Multiparty-computation-based Overlay (PISMO) for Secure and Resilient Communication Through 5G
NSF 融合加速器轨道 G:隐私保护、抗入侵、基于安全多方计算的覆盖 (PISMO),通过 5G 实现安全和弹性通信
- 批准号:
2226457 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Standard Grant
Efficient computation of motion picture hologram based on video compression approach
基于视频压缩方法的运动图像全息图的高效计算
- 批准号:
22K12070 - 财政年份:2022
- 资助金额:
$ 210.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi Compartment Computation Protocol based on DSbD
基于DSbD的多室计算协议
- 批准号:
10004545 - 财政年份:2021
- 资助金额:
$ 210.07万 - 项目类别:
Collaborative R&D
Market Assessment for an interface between the nervous system and ML-based digital computation to enable nervous system repair and augmentation.
对神经系统和基于机器学习的数字计算之间的接口进行市场评估,以实现神经系统的修复和增强。
- 批准号:
571000-2022 - 财政年份:2021
- 资助金额:
$ 210.07万 - 项目类别:
Idea to Innovation
Development of Multi-objective Evolutionary Computation Algorithms Based on Adaptive Operator Slection and Dynamic System Learning
基于自适应算子选择和动态系统学习的多目标进化计算算法的发展
- 批准号:
20K11997 - 财政年份:2020
- 资助金额:
$ 210.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CC* Compute: GPU-based Computation and Data Enabled Research and Education (G-CoDERE) at PSU
CC* 计算:PSU 基于 GPU 的计算和数据支持的研究和教育 (G-CoDERE)
- 批准号:
2019216 - 财政年份:2020
- 资助金额:
$ 210.07万 - 项目类别:
Standard Grant
Reverse engineering methods for elucidating the molecular assembly mechanisms of thermoresponsive peptide-based conjugates: computation and experiment
阐明温敏肽缀合物分子组装机制的逆向工程方法:计算和实验
- 批准号:
2023668 - 财政年份:2020
- 资助金额:
$ 210.07万 - 项目类别:
Standard Grant














{{item.name}}会员




