Smart electrodes for energy storage devices

储能装置智能电极

基本信息

  • 批准号:
    EP/Y003462/1
  • 负责人:
  • 金额:
    $ 21.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Energy crises and climate changes are the two topmost challenges in this 21st century. Renewable energy resources like solar and wind technology could be the ultimate solution to address these societal and environmental problems. In addition, to ease the gap between the energy supply and demand on the grid, we need sustainable energy storage devices. Promising storage devices are batteries and capacitors. Indeed, capacitors have undergone a series of development stages and nowadays, supercapacitors are at the frontline of energy research. Supercapacitors are considered as bridging the gap between conventional capacitors and batteries in terms of energy and power. They can store more energy than conventional capacitors and supply it at higher power outputs than batteries. Supercapacitors offer an excellent power-to-weight ratio which makes them suitable for high power requirements released in a short period. Over recent years, there has been a growing demand for supercapacitors due to modern applications like electric vehicles and power back-ups that require fast charge release.The key determinants of an energy storage device's performance are the properties of the electrode materials. The ideal electrode would consist of (i) high conductivity to allow fast electron/hole transfer, and (ii) a high surface area to give many active sites. 2D materials have all these necessary parameters, which makes them next-generation electrode materials for high-performing energy storage devices. So far, graphene, metal oxides, dichalcogenides, and transition metal carbides/nitrides (MXenes), have been investigated for their potential roles in energy storage applications. The limited cycle life and inferior rate capabilities of these materials-based devices still hinder their practical applications. This bottleneck can be overcome by the smart choice of elemental combination along with carbon coupling that will improve rate capability and prolonged cycling stability.In this project, we are aiming to develop a new class of electrode materials based on metal chalcogenide compounds and their carbon coupling nanostructures. This collaborative project is expected to produce economical, sustainable, high-performance metal chalcogenide electrode materials for next-generation energy storage devices. The project is aligned with the theme of developing materials and devices for sustainable energy storage and has enormous potential to impact energy storage devices, green energy technology, advanced materials, and sustainable energy materials.
能源危机和气候变化是21世纪面临的两大挑战。太阳能和风能技术等可再生能源可能是解决这些社会和环境问题的最终解决方案。此外,为了缓解电网能源供需之间的差距,我们需要可持续的储能设备。有前途的存储设备是电池和电容器。事实上,电容器经历了一系列的发展阶段,如今,超级电容器处于能源研究的前沿。超级电容器被认为是在能量和功率方面弥合传统电容器和电池之间的差距。它们可以比传统电容器存储更多的能量,并以比电池更高的功率输出提供能量。超级电容器具有出色的功率重量比,这使其适用于在短时间内释放的高功率要求。近年来,由于电动汽车和备用电源等需要快速释放电荷的现代应用,对超级电容器的需求不断增长。决定储能设备性能的关键因素是电极材料的性能。理想的电极将由(i)允许快速电子/空穴转移的高电导率和(ii)提供许多活性位点的高表面积组成。2D材料具有所有这些必要的参数,这使它们成为高性能储能设备的下一代电极材料。到目前为止,石墨烯、金属氧化物、二硫属化物和过渡金属碳化物/氮化物(MXenes)已经被研究了它们在能量存储应用中的潜在作用。这些基于材料的器件的有限的循环寿命和较差的速率能力仍然阻碍着它们的实际应用。这个瓶颈可以通过巧妙地选择元素组合沿着碳偶联来克服,这将提高倍率性能和延长的循环稳定性。在这个项目中,我们的目标是开发一类基于金属硫族化合物及其碳偶联纳米结构的新电极材料。该合作项目有望为下一代储能设备生产经济、可持续、高性能的金属硫属化物电极材料。该项目与开发可持续能源存储材料和设备的主题相一致,并具有影响能源存储设备,绿色能源技术,先进材料和可持续能源材料的巨大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nilanthy Balakrishnan其他文献

Nilanthy Balakrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于高性能纳米线的3D打印储能芯片制备与构效关系研究
  • 批准号:
    JCZRLH202500840
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
  • 批准号:
    10697600
  • 财政年份:
    2023
  • 资助金额:
    $ 21.1万
  • 项目类别:
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
  • 批准号:
    10717563
  • 财政年份:
    2023
  • 资助金额:
    $ 21.1万
  • 项目类别:
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
  • 批准号:
    10571952
  • 财政年份:
    2023
  • 资助金额:
    $ 21.1万
  • 项目类别:
Ultrafast FLASH radiation therapy dosimetry
超快 FLASH 放射治疗剂量测定
  • 批准号:
    10667940
  • 财政年份:
    2023
  • 资助金额:
    $ 21.1万
  • 项目类别:
New Biomass Anode Technology and Silicon Electrodes with high Energy Density (New BATSEED)
新型生物质阳极技术和高能量密度硅电极(New BATSEED)
  • 批准号:
    10044823
  • 财政年份:
    2023
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Collaborative R&D
High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
  • 批准号:
    10431428
  • 财政年份:
    2022
  • 资助金额:
    $ 21.1万
  • 项目类别:
Developing a dual energy x-ray source for low-cost spectral CT
开发用于低成本能谱 CT 的双能 X 射线源
  • 批准号:
    10610908
  • 财政年份:
    2022
  • 资助金额:
    $ 21.1万
  • 项目类别:
All solid-state electrochemical energy storage devices using strain-free MXene electrodes
使用无应变 MXene 电极的所有固态电化学储能装置
  • 批准号:
    22K19092
  • 财政年份:
    2022
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanistic Investigation of Metal Sulfide Electrodes for High-Energy Non-Aqueous Anion Batteries
高能非水阴离子电池金属硫化物电极的机理研究
  • 批准号:
    2215645
  • 财政年份:
    2022
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
  • 批准号:
    10525010
  • 财政年份:
    2022
  • 资助金额:
    $ 21.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了