Cold-atom source of strontium for Quantum Technology

用于量子技术的锶冷原子源

基本信息

  • 批准号:
    EP/Y004175/1
  • 负责人:
  • 金额:
    $ 74.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Accurate navigation on earth and in space relies on precise and accurate timekeeping. Better clocks will give faster data transfer, improved positioning, and new science applications. A significant and increasing fraction of the UK GDP depends on Global Navigation Satellite Systems (GNSS) technologies. Location based services associated with mobile broadband services are driving further growth. Thus ensuring the proper dissemination of time from the worldwide network of National Metrology Institutes (NMIs) is essential to the functioning of the economy and infrastructure of the UK, and other developed countries. Networked systems have vulnerabilities, however, and these risks need to be mitigated by having standalone oscillators distributed in the system that can continue providing the required service. The new generation of optical clocks provides a 100 times better performance and will enhance the capabilities of GNSS. As systems evolve to make use of this higher precision it is vital to improve the `holdover' technology in order to guarantee continuity. Atomic microwave clocks have been available commercially for many years and are at the heart of communication systems, e.g. a contributor to the synchronization of GPS is the ensemble of over 50 devices maintained at the US Naval Observatory. Clocks use the internal energy levels of atoms to control the frequency of an oscillator accurately. Optical clocks that use lasers to interrogate atomic transitions are several orders of magnitude better than devices based on microwave transitions because the optical transitions have higher frequency and are chosen to have a higher 'quality factor'. Laser cooling of atoms has revolutionised timekeeping and this dramatic change is spreading to other quantum technologies for precision measurements such as matter-wave interferometers used as inertial sensors for navigation and gravimeters for surveying. There are also major research applications of atom interferometry in fundamental physics such as new types of detector for dark matter and gravitational waves. The experimental methods that are being developed to build atom interferometers with large baselines (kilometre scale) use the special properties of the extremely narrow clock transition in strontium atoms and adapt the technology that has been developed for optical clocks. This project seeks to develop a source of laser-cooled strontium atoms that is a key component in the supply chain for the fabrication of the next generation of such quantum devices.This project will support the development of a high-flux cold-atom source of strontium to a Technology Readiness Level at which it can be supplied to others for integration into instruments. We will also test new aspects of atom sources such as pulsed operation to prolong the lifetime, which is an important consideration for the deployment of clocks and quantum instruments outside of research laboratories, for example in projects to build very large-scale interferometers in deep shafts where access is restricted.
地球和太空中的精确导航依赖于精确和准确的计时。更好的时钟将提供更快的数据传输,更好的定位和新的科学应用。英国国内生产总值的一个重要和越来越大的部分取决于全球导航卫星系统(GNSS)技术。与移动的宽带服务相关联的基于位置的服务正在推动进一步的增长。因此,确保国家计量研究所(NMIs)的全球网络正确传播时间对于英国和其他发达国家的经济和基础设施的运作至关重要。然而,联网系统存在漏洞,需要通过在系统中分布独立的振荡器来减轻这些风险,这些振荡器可以继续提供所需的服务。新一代光学时钟的性能提高了100倍,将增强全球导航卫星系统的能力。随着系统不断发展以利用这种更高的精度,至关重要的是改进“保持”技术,以保证连续性。原子微波钟已经在商业上使用多年,并且是通信系统的核心,例如,对GPS同步的贡献者是美国海军天文台维护的50多个设备的集合。时钟利用原子的内部能级来精确控制振荡器的频率。使用激光来询问原子跃迁的光学时钟比基于微波跃迁的设备好几个数量级,因为光学跃迁具有更高的频率,并且被选择为具有更高的“质量因子”。原子的激光冷却已经彻底改变了计时,这一巨大的变化正在扩展到其他量子技术的精确测量,例如用作导航惯性传感器的物质波干涉仪和测量重力仪。原子干涉测量在基础物理学中也有重要的研究应用,如暗物质和引力波的新型探测器。正在开发的建造大基线(公里级)原子干涉仪的实验方法利用锶原子中极窄的时钟跃迁的特殊性质,并采用为光学时钟开发的技术。该项目旨在开发一种激光冷却锶原子源,这是制造下一代量子器件供应链的关键组成部分。该项目将支持开发一种高通量冷原子锶源,使其达到技术就绪水平,从而可以将其提供给其他人以集成到仪器中。我们还将测试原子源的新方面,例如脉冲操作以延长寿命,这是在研究实验室之外部署时钟和量子仪器的重要考虑因素,例如在进入受到限制的深井中建造超大规模干涉仪的项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Foot其他文献

Colder, yet colder atoms
更冷,更冷的原子
  • DOI:
    10.1038/375447a0
  • 发表时间:
    1995-06-08
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Christopher Foot
  • 通讯作者:
    Christopher Foot
A Heisenberg microscope
一个海森堡显微镜
  • DOI:
    10.1038/371744a0
  • 发表时间:
    1994-10-27
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Christopher Foot
  • 通讯作者:
    Christopher Foot
Atoms brought to a new focus
原子被置于新的焦点上
  • DOI:
    10.1038/355303a0
  • 发表时间:
    1992-01-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Christopher Foot
  • 通讯作者:
    Christopher Foot
Crystals with a light touch
轻轻触碰的水晶
  • DOI:
    10.1038/358715a0
  • 发表时间:
    1992-08-27
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Andrew Steane;Christopher Foot
  • 通讯作者:
    Christopher Foot
Multiphoton laser cooling
多光子激光冷却
  • DOI:
    10.1038/347127a0
  • 发表时间:
    1990-09-13
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Andrew Steane;Christopher Foot
  • 通讯作者:
    Christopher Foot

Christopher Foot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Foot', 18)}}的其他基金

Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
  • 批准号:
    EP/X024601/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION
AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择
  • 批准号:
    ST/W006626/1
  • 财政年份:
    2022
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
Laser and stabilization package for AION
AION 的激光和稳定套件
  • 批准号:
    ST/X004899/1
  • 财政年份:
    2022
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
  • 批准号:
    ST/T006633/1
  • 财政年份:
    2021
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
Investigating non-equilibrium physics and universality using two-dimensional quantum gases
使用二维量子气体研究非平衡物理和普遍性
  • 批准号:
    EP/S013105/1
  • 财政年份:
    2018
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
compact Cold-Atom Sources (cCAS)
紧凑型冷原子源 (cCAS)
  • 批准号:
    EP/R001685/1
  • 财政年份:
    2017
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
  • 批准号:
    EP/J008028/1
  • 财政年份:
    2011
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
Quantum simulation using optical lattices
使用光学晶格的量子模拟
  • 批准号:
    EP/E041612/1
  • 财政年份:
    2007
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
Direct quantum simulation using cold bosonic atoms in an optical lattice
使用光学晶格中的冷玻色子原子进行直接量子模拟
  • 批准号:
    EP/E010873/1
  • 财政年份:
    2007
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant

相似国自然基金

1keV/atom以下的团簇离子注入固体极浅表面的过程研究
  • 批准号:
    11075076
  • 批准年份:
    2010
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
  • 批准号:
    40974100
  • 批准年份:
    2009
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel source of excited metastable atoms for Atom Trap Trace Analysis
用于原子陷阱痕量分析的激发亚稳态原子的新来源
  • 批准号:
    DP230101253
  • 财政年份:
    2023
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Discovery Projects
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10440504
  • 财政年份:
    2021
  • 资助金额:
    $ 74.85万
  • 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10275111
  • 财政年份:
    2021
  • 资助金额:
    $ 74.85万
  • 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10608144
  • 财政年份:
    2021
  • 资助金额:
    $ 74.85万
  • 项目类别:
High-BIAS2: High-Bandwidth Inertial Atom Source & Sensor
High-BIAS2:高带宽惯性原子源
  • 批准号:
    41095
  • 财政年份:
    2020
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Collaborative R&D
PICAS2: Photonically Integrated Cold-Atom Source and System
PICAS2:光子集成冷原子源和系统
  • 批准号:
    133983
  • 财政年份:
    2020
  • 资助金额:
    $ 74.85万
  • 项目类别:
    CR&D Bilateral
Novel Atom source for ultra-cold Sr.
用于超冷 Sr 的新型原子源。
  • 批准号:
    1965420
  • 财政年份:
    2017
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Studentship
PICAS: Photonically Integrated Cold Atom Source
PICAS:光子集成冷原子源
  • 批准号:
    132542
  • 财政年份:
    2017
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Feasibility Studies
FreezeRay (Compact laser cooled cold atom source)
FreezeRay(紧凑型激光冷却冷原子源)
  • 批准号:
    EP/M508238/1
  • 财政年份:
    2015
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Research Grant
FreezeRay (Compact laser cooled cold atom source)
FreezeRay(紧凑型激光冷却冷原子源)
  • 批准号:
    102243
  • 财政年份:
    2015
  • 资助金额:
    $ 74.85万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了