Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION
AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择
基本信息
- 批准号:ST/W006626/1
- 负责人:
- 金额:$ 11.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The technology developed in this programme will enhance atom interferometry in both the Atom Interferometry Observatory Network (AION) and MAGIS-100 projects by developing and implementing clock-laser technology and test of the methodology for very long baseline instruments. The strong scientific motivation for developing a new generation of quantum sensors stems from detailed theoretical work that shows how these instruments will push searches for certain types of dark matter beyond current boundaries and pioneer a new approach to the detection of gravity waves in a different range of frequency from the existing experiments LIGO and Virgo (thus complementing existing approaches). The long-baseline atom interferometers around the world will be networked, and there are many possible synergies through joint observations. Although gravity-wave detection on Earth provides a wealth of new information, much higher sensitivity can be achieved in space and future projects such as the Atomic Experiment for Dark Matter and Gravity Exploration in Space (AEDGE), are already being discussed.The AION instrument combines the advantages of state-of-the-art optical clocks based on Sr atoms with atom interferometry. Two clouds of atoms will be prepared at different heights along a long vertical vacuum pipe, and both clouds will be launched so that they travel upwards before coming to rest and falling back down under gravity. Such 'atomic fountains' allow a long measurement time but atoms must be cooled to temperatures less than 1 nanokelvin otherwise they spread out too much before falling back through the detection region. A vertical laser beam runs through both clouds of atoms, at different heights, so that there is common-mode rejection of noise by differential measurement.Some aspects of the required technology are being developed. In this proposal, we shall develop the narrow bandwidth (few Hz) laser systems required for an interferometer using the narrowest single-photon transition in atomic strontium; the clock transition at (698nm) which is 1000 times narrower than the transition (at 689nm) originally planned for the initial demonstrator of differential interferometry. This electronic and optical technology will be developed as reliable modules for future deployment at the site of large baseline instruments. This represents an important stepping stone towards the AION-10 device. In addition, the narrowness of the clock transition allows extremely precise velocity selection of atoms from a distribution as required for high-contrast fringes from a long interferometer sequences. Furthermore this allows rapid interleaving of interferometry sequences by the sequential selection of different velocity classes from a single transported atom cloud, without repeating the laser cooling and transport processes. This work will be supported by comprehensive simulations using efficient numerical techniques being developed in AION. The AION programme exploits synergies between STFC and EPSRC science and the strategic areas of quantum technology, computing and metrology. It brings together a consortium of experimental and theoretical particle physicists, as well as astrophysicists and instrumentation experts, quantum information scientists, experts in Sr based atomic-clock research, and atomic physicists drawn from the STFC and EPSRC communities. The quantum technologies of AION have potential applications in such varied areas as navigation and oil drilling. We will work closely with the UK Quantum Technologies Hub in sensors and metrology to develop these technologies and bring them to market.
该方案开发的技术将通过开发和实施时钟激光技术和测试甚长基线仪器的方法,加强原子干涉测量观测网和MAGIS-100项目中的原子干涉测量。开发新一代量子传感器的强烈科学动机源于详细的理论工作,这些理论工作表明这些仪器将如何推动对某些类型暗物质的搜索超越当前的界限,并开创了一种新的方法来检测与现有实验LIGO和Virgo不同频率范围的重力波(从而补充现有方法)。世界各地的长基线原子干涉仪将联网,通过联合观测有许多可能的协同作用。虽然地球上的引力波探测提供了丰富的新信息,但在太空中可以实现更高的灵敏度,并且已经在讨论未来的项目,如暗物质原子实验和太空引力探测(AEDGE)AION仪器结合了基于Sr原子的最先进光学时钟与原子干涉测量的优势。两个原子云将沿着沿着一个长的垂直真空管在不同的高度准备好,两个云都将被发射,以便它们在静止之前向上运动,并在重力作用下回落。这种“原子喷泉”允许长时间的测量,但原子必须冷却到低于1纳开尔文的温度,否则它们在通过检测区域回落之前会扩散得太多。一束垂直的激光束穿过两个原子云的不同高度,这样就可以通过差分测量消除共模噪声。所需技术的某些方面正在开发中。在这个建议中,我们将开发窄带宽(几赫兹)激光系统所需的干涉仪使用最窄的单光子跃迁在原子锶;时钟跃迁(698 nm),这是1000倍窄的过渡(689 nm)最初计划的演示差分干涉。这种电子和光学技术将发展成为今后在大型基线仪器现场部署的可靠模块。这是迈向AION-10设备的重要垫脚石。此外,窄的时钟过渡允许非常精确的速度选择原子的分布所需的高对比度条纹从一个长的干涉仪序列。此外,这允许通过从单个传输的原子云中顺序选择不同的速度类别来快速交错干涉测量序列,而无需重复激光冷却和传输过程。这项工作将得到全面模拟的支持,使用AION正在开发的高效数值技术。AION计划利用STFC和EPSRC科学与量子技术,计算和计量学战略领域之间的协同作用。它汇集了实验和理论粒子物理学家,以及天体物理学家和仪器专家,量子信息科学家,锶原子钟研究专家以及来自STFC和EPSRC社区的原子物理学家。AION量子技术在航海、石油钻探等领域具有潜在的应用前景。我们将与英国量子技术中心在传感器和计量方面密切合作,开发这些技术并将其推向市场。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Centralised Design and Production of the Ultra-High Vacuum and Laser-Stabilisation Systems for the AION Ultra-Cold Strontium Laboratories
AION 超冷锶实验室超高真空和激光稳定系统的集中设计和生产
- DOI:10.48550/arxiv.2305.20060
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Stray B
- 通讯作者:Stray B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Foot其他文献
Colder, yet colder atoms
更冷,更冷的原子
- DOI:
10.1038/375447a0 - 发表时间:
1995-06-08 - 期刊:
- 影响因子:48.500
- 作者:
Christopher Foot - 通讯作者:
Christopher Foot
A Heisenberg microscope
一个海森堡显微镜
- DOI:
10.1038/371744a0 - 发表时间:
1994-10-27 - 期刊:
- 影响因子:48.500
- 作者:
Christopher Foot - 通讯作者:
Christopher Foot
Atoms brought to a new focus
原子被置于新的焦点上
- DOI:
10.1038/355303a0 - 发表时间:
1992-01-23 - 期刊:
- 影响因子:48.500
- 作者:
Christopher Foot - 通讯作者:
Christopher Foot
Crystals with a light touch
轻轻触碰的水晶
- DOI:
10.1038/358715a0 - 发表时间:
1992-08-27 - 期刊:
- 影响因子:48.500
- 作者:
Andrew Steane;Christopher Foot - 通讯作者:
Christopher Foot
Multiphoton laser cooling
多光子激光冷却
- DOI:
10.1038/347127a0 - 发表时间:
1990-09-13 - 期刊:
- 影响因子:48.500
- 作者:
Andrew Steane;Christopher Foot - 通讯作者:
Christopher Foot
Christopher Foot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Foot', 18)}}的其他基金
Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
- 批准号:
EP/X024601/1 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Cold-atom source of strontium for Quantum Technology
用于量子技术的锶冷原子源
- 批准号:
EP/Y004175/1 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Laser and stabilization package for AION
AION 的激光和稳定套件
- 批准号:
ST/X004899/1 - 财政年份:2022
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
- 批准号:
ST/T006633/1 - 财政年份:2021
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Investigating non-equilibrium physics and universality using two-dimensional quantum gases
使用二维量子气体研究非平衡物理和普遍性
- 批准号:
EP/S013105/1 - 财政年份:2018
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
compact Cold-Atom Sources (cCAS)
紧凑型冷原子源 (cCAS)
- 批准号:
EP/R001685/1 - 财政年份:2017
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
- 批准号:
EP/J008028/1 - 财政年份:2011
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Quantum simulation using optical lattices
使用光学晶格的量子模拟
- 批准号:
EP/E041612/1 - 财政年份:2007
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Direct quantum simulation using cold bosonic atoms in an optical lattice
使用光学晶格中的冷玻色子原子进行直接量子模拟
- 批准号:
EP/E010873/1 - 财政年份:2007
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
- 批准号:40974100
- 批准年份:2009
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
- 批准号:
2308767 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Standard Grant
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
- 批准号:
2885950 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Studentship
Robust, Trapped Ultracold Atom Interferometry For Six-axis Inertial Sensing
用于六轴惯性传感的稳健、俘获超冷原子干涉仪
- 批准号:
EP/Y004728/1 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Testing the weak equivalence principle with antimatter via Rydberg-Atom Interferometry
通过里德堡原子干涉仪测试反物质的弱等效原理
- 批准号:
2868587 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Studentship
ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
- 批准号:
2328663 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Standard Grant
LEAPS-MPS: Simultaneous Multiaxis Atom Interferometry for Inertial Sensing
LEAPS-MPS:用于惯性传感的同步多轴原子干涉测量
- 批准号:
2316595 - 财政年份:2023
- 资助金额:
$ 11.16万 - 项目类别:
Standard Grant
Using atom interferometry to search for masses behind barriers
使用原子干涉测量法寻找障碍物后面的质量
- 批准号:
2640236 - 财政年份:2022
- 资助金额:
$ 11.16万 - 项目类别:
Studentship
Testing Theories Of Dark Energy Using Atom Interferometry
使用原子干涉测量法测试暗能量理论
- 批准号:
ST/W00626X/1 - 财政年份:2022
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant
Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION
AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择
- 批准号:
ST/W006332/1 - 财政年份:2022
- 资助金额:
$ 11.16万 - 项目类别:
Research Grant