Recovering quantum information in a noisy quantum channel
在嘈杂的量子通道中恢复量子信息
基本信息
- 批准号:EP/Y004752/1
- 负责人:
- 金额:$ 53.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Irreversibility seems to be a universal nature of physical processes in our daily experience. Melted ice cream will not spontaneously freeze into its original shape, and a cocktail will not be distilled into liquors once it is mixed. The reversibility can be observed even in the most macroscopic scale in the universe; a particle fell into a black hole will never be recovered due to the principle of general relativity. On the other hand, the physical laws governing mechanics, such as Newtonian's law and quantum unitary evolutions, seem to have the time-reversal symmetry, sometimes accompanied with other physical symmetries, e.g., charge and parity. In other words, the time-reversed trajectory of a single particle seems as natural as the forward trajectory in time.In quantum mechanics, all the dynamics in a closed quantum system is reversible and this is the feature assumed in all the algorithms for quantum computation. However, in the real-world situation, gate operations are imperfect and noise is inevitably added to destroy quantum coherences and entanglement and ultimately this quantum reversibility. This project proposes an intriguing direction to approach this problem by regarding a physical process as a quantum communication channel, transmitting valuable information encoded in a quantum state. From this viewpoint, the reversibility of quantum processes can be quantified as the amount of quantum information that can be retrieved by the decoding process. The main objective of the research is to establish a theoretical framework towards a quantitative description of the recovery of quantum information in a noisy quantum processing channel, by characterising the fundamental limitation of recovering quantum information and identifying a minimal resource to achieve the recovery. By adopting the Petz recovery map as the recovery / decoding quantum channel, we will investigate a precise condition to recover quantum information from a noisy environment in various aspects: to find an improved bound of the quantum capacity for quantum communication, to develop a new method for quantum error correction in quantum computation, and to characterise and quantify a role of quantum memory in the quantum feedback control. Our research aims to reduce the impact of noise and imperfections of gate operations in quantum computing so that we can perform simulations or algorithms to demonstrate quantum advantages.This research will open a new paradigm to understand the noise-reversibility condition in quantum computing. At the same time, the resource-efficient recovery protocols obtained from the proposed research has potential to deliver a significant impact on practical applications, including quantum communications and quantum computations, where a high-fidelity recovery of a quantum state is necessary.
不可逆性似乎是我们日常经验中物理过程的普遍性质。融化的冰淇淋不会自发地冻结成原来的形状,鸡尾酒一旦混合就不会蒸馏成酒。即使在宇宙中最宏观的尺度上也可以观察到可逆性;由于广义相对论原理,落入黑洞的粒子永远不会恢复。另一方面,支配力学的物理定律,如牛顿定律和量子幺正演化,似乎具有时间反演对称性,有时还伴随着其他物理对称性,例如,收费和平价。在量子力学中,封闭量子系统中的所有动力学都是可逆的,这也是所有量子计算算法所假定的特征。然而,在现实世界的情况下,门操作是不完美的,噪声不可避免地被添加到破坏量子相干性和纠缠,并最终这种量子可逆性。该项目提出了一个有趣的方向来解决这个问题,将物理过程视为量子通信信道,传输以量子态编码的有价值的信息。从这个角度来看,量子过程的可逆性可以量化为解码过程可以检索的量子信息量。该研究的主要目标是建立一个理论框架,定量描述在有噪声的量子处理信道中恢复量子信息,通过表征恢复量子信息的基本限制,并确定实现恢复的最小资源。通过采用Petz恢复映射作为恢复/解码量子信道,我们将从多个方面研究从噪声环境中恢复量子信息的精确条件:找到量子通信的量子容量的改进界限,开发量子计算中量子纠错的新方法,以及验证和量化量子存储器在量子反馈控制中的作用。我们的研究旨在减少量子计算中噪声和门操作的不完美性的影响,以便我们可以进行模拟或算法来证明量子的优势。这项研究将打开一个新的范式来理解量子计算中的噪声可逆性条件。与此同时,从拟议的研究中获得的资源高效的恢复协议有可能对实际应用产生重大影响,包括量子通信和量子计算,其中需要对量子状态进行高保真恢复。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limitations of probabilistic error cancellation for open dynamics beyond sampling overhead
- DOI:10.1103/physreva.109.012431
- 发表时间:2023-08
- 期刊:
- 影响因子:2.9
- 作者:Yue-Chi Ma;M. Kim
- 通讯作者:Yue-Chi Ma;M. Kim
Gaussian boson sampling at finite temperature
- DOI:10.1103/physreva.109.013707
- 发表时间:2023-08
- 期刊:
- 影响因子:2.9
- 作者:G. Bressanini;Hyukjoon Kwon;M. Kim
- 通讯作者:G. Bressanini;Hyukjoon Kwon;M. Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Myungshik Kim其他文献
Cavity-assisted energy relaxation for quantum many-body simulations
用于量子多体模拟的腔辅助能量弛豫
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jaeyoon Cho;S. Bose;Myungshik Kim;Myungshik Kim - 通讯作者:
Myungshik Kim
Recent developments in photon-level operations on travelling light fields
- DOI:
10.1088/0953-4075/41/13/133001 - 发表时间:
2008-07 - 期刊:
- 影响因子:0
- 作者:
Myungshik Kim - 通讯作者:
Myungshik Kim
T-depth-optimized quantum search with quantum data-access machine
使用量子数据访问机进行 T 深度优化的量子搜索
- DOI:
10.1088/2058-9565/ad04e5 - 发表时间:
2022 - 期刊:
- 影响因子:6.7
- 作者:
Jung Jun Park;Kyunghyun Baek;Myungshik Kim;H. Nha;Jaewan Kim;Jeongho Bang - 通讯作者:
Jeongho Bang
Polynomial T-depth quantum solvability of noisy binary linear problem: from quantum-sample preparation to main computation
噪声二元线性问题的多项式 T 深度量子可解性:从量子样本准备到主要计算
- DOI:
10.1088/1367-2630/ac94ef - 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Wooyeong Song;Youngrong Lim;Kabgyun Jeong;Jinhyoung Lee;Jung Jun Park;Myungshik Kim;Jeongho Bang - 通讯作者:
Jeongho Bang
Macroscopic Quantum Resonators (MAQRO): 2015 update
- DOI:
10.1140/epjqt/s40507-016-0043-7 - 发表时间:
2016-03-24 - 期刊:
- 影响因子:5.600
- 作者:
Rainer Kaltenbaek;Markus Aspelmeyer;Peter F Barker;Angelo Bassi;James Bateman;Kai Bongs;Sougato Bose;Claus Braxmaier;Časlav Brukner;Bruno Christophe;Michael Chwalla;Pierre-François Cohadon;Adrian Michael Cruise;Catalina Curceanu;Kishan Dholakia;Lajos Diósi;Klaus Döringshoff;Wolfgang Ertmer;Jan Gieseler;Norman Gürlebeck;Gerald Hechenblaikner;Antoine Heidmann;Sven Herrmann;Sabine Hossenfelder;Ulrich Johann;Nikolai Kiesel;Myungshik Kim;Claus Lämmerzahl;Astrid Lambrecht;Michael Mazilu;Gerard J Milburn;Holger Müller;Lukas Novotny;Mauro Paternostro;Achim Peters;Igor Pikovski;André Pilan Zanoni;Ernst M Rasel;Serge Reynaud;Charles Jess Riedel;Manuel Rodrigues;Loïc Rondin;Albert Roura;Wolfgang P Schleich;Jörg Schmiedmayer;Thilo Schuldt;Keith C Schwab;Martin Tajmar;Guglielmo M Tino;Hendrik Ulbricht;Rupert Ursin;Vlatko Vedral - 通讯作者:
Vlatko Vedral
Myungshik Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Myungshik Kim', 18)}}的其他基金
Developing coherent states as a resource in quantum technology
开发相干态作为量子技术的资源
- 批准号:
EP/F049099/2 - 财政年份:2010
- 资助金额:
$ 53.6万 - 项目类别:
Research Grant
Developing coherent states as a resource in quantum technology
开发相干态作为量子技术的资源
- 批准号:
EP/F049099/1 - 财政年份:2008
- 资助金额:
$ 53.6万 - 项目类别:
Research Grant
Implementation of a quantum information processor with limited resources
利用有限资源实现量子信息处理器
- 批准号:
EP/E003931/1 - 财政年份:2006
- 资助金额:
$ 53.6万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
- 批准号:
EP/Z000807/1 - 财政年份:2025
- 资助金额:
$ 53.6万 - 项目类别:
Fellowship
Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
- 批准号:
2345607 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Standard Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Standard Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
- 批准号:
2350250 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Standard Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
- 批准号:
EP/Z000505/1 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Research Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
- 批准号:
EP/Z000572/1 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Research Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 53.6万 - 项目类别:
Continuing Grant
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
- 批准号:
23H01131 - 财政年份:2023
- 资助金额:
$ 53.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 53.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)