Valuation Structures for Infinite Duration Games
无限期游戏的估值结构
基本信息
- 批准号:EP/Y027663/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Infinite duration games are the natural and elegant mathematical model underlying reactive systems: non-terminating systems that maintain a continuous interaction with their environment. Hardware circuits, communication protocols, and embedded controllers are typical examples. The unicorn for these systems is reactive synthesis: an approach that takes automatically construct reactive controllers directly from a given specification (or proves that no such controller exists). The need for designing increasingly complex synthesis scenarios motivates the study of infinite duration games, which have attracted considerable attention in the past twenty years or so.A recent progress has been achieved by the introduction of structured valuations, a new and powerful tool in the study of infinite duration games. Structured valuations are quantitative specifications induced by a graph structure with further monotonicity requirements. We will capture well-studied specifications using structured valuations that will allow us to uniformly analyse and manipulate them. We will tackle ambitious structural (how complex are controllers implementing a given specification) as well as algorithmic (how to decide existence of such a controller) questions for infinite duration games through the lens of structured valuations.We will prove Kopczynski's conjecture that specifications that admit simple controllers are closed under unions, we will design techniques to construct structured valuations that capture unions of general classes of specifications. We will determine which properties of structured valuations guarantee the possibility of running strategy improvement algorithms, which provide efficient and practical solutions for solving infinite duration games. Specialising our characterisation to parity games, we will either design new scalable strategy improvement frameworks (with quasi-polynomial worst-case running time) or give formal evidence that such structures do not exist.
无限持续时间游戏是反应系统的自然和优雅的数学模型:与环境保持持续交互的非终止系统。硬件电路、通信协议和嵌入式控制器是典型的例子。这些系统的独角兽是反应式合成:一种直接从给定规范自动构建反应式控制器(或证明不存在这样的控制器)的方法。无限久期博弈的研究在近二十年来受到了广泛的关注,结构化估值方法是研究无限久期博弈的一个新的有力工具。结构化估值是由具有进一步单调性要求的图结构引起的定量规范。我们将使用结构化估值来捕捉经过充分研究的规格,这将使我们能够统一分析和操纵它们。我们将解决雄心勃勃的结构性问题,(控制器实现给定规范的复杂程度)以及算法(如何判定这样一个控制器的存在性)问题的无限持续时间的游戏通过透镜的结构估值。我们将证明Kopczynski的猜想,规范,承认简单的控制器是封闭的工会,我们将设计技术来构建结构化的估值,以捕获一般类别的规范的联合。我们将确定结构化估值的哪些属性保证了运行策略改进算法的可能性,这些算法为解决无限持续时间游戏提供了有效和实用的解决方案。专门我们的特点,平价游戏,我们将设计新的可扩展的战略改进框架(准多项式最坏情况下的运行时间)或正式的证据表明,这种结构不存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sven Schewe其他文献
Editorial: special issue on synthesis
- DOI:
10.1007/s00236-014-0198-6 - 发表时间:
2014-04-19 - 期刊:
- 影响因子:0.500
- 作者:
Doron Peled;Sven Schewe - 通讯作者:
Sven Schewe
Digital features of chemical elements extracted from local geometries in crystal structures
从晶体结构中的局部几何形状提取的化学元素的数字特征
- DOI:
10.1039/d4dd00346b - 发表时间:
2024-12-17 - 期刊:
- 影响因子:5.600
- 作者:
Andrij Vasylenko;Dmytro Antypov;Sven Schewe;Luke M. Daniels;John B. Claridge;Matthew S. Dyer;Matthew J. Rosseinsky - 通讯作者:
Matthew J. Rosseinsky
Hydrogen permeation and embrittlement behavior of ferritic SOEC/SOFC interconnect candidates
铁素体 SOEC/SOFC 互连候选材料的氢渗透和脆化行为
- DOI:
10.1016/j.ijhydene.2024.03.337 - 发表时间:
2024 - 期刊:
- 影响因子:7.2
- 作者:
David Kniep;Sven Schewe;Mario Rudolphi;Mathias Christian Galetz - 通讯作者:
Mathias Christian Galetz
Bounded synthesis
- DOI:
10.1007/s10009-012-0228-z - 发表时间:
2012-04-07 - 期刊:
- 影响因子:1.400
- 作者:
Bernd Finkbeiner;Sven Schewe - 通讯作者:
Sven Schewe
Sven Schewe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sven Schewe', 18)}}的其他基金
TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development
值得信赖:安全软件开发的安全摘要
- 批准号:
EP/X03688X/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Below the Branches of Universal Trees
普世树枝下
- 批准号:
EP/X017796/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Reinforcement Learning for Finite Horizons (ReLeaF)
有限视野强化学习 (ReLeaF)
- 批准号:
EP/X021513/1 - 财政年份:2022
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
Solving Parity Games in Theory and Practice
从理论和实践中解决平价博弈
- 批准号:
EP/P020909/1 - 财政年份:2017
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Synthesis and Verification in Markov Game Structures
马尔可夫博弈结构的综合与验证
- 批准号:
EP/H046623/1 - 财政年份:2010
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
相似海外基金
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
- 批准号:
23H03461 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation on aliovalent doping effect in nickelates with infinite structures using epitaxial thin films
利用外延薄膜研究无限结构镍酸盐中的异价掺杂效应
- 批准号:
20H02435 - 财政年份:2020
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Specification Mining and Reasoning about Programs for Verifying Systems with Infinite Structures
无限结构系统验证程序规范挖掘与推理
- 批准号:
18K11432 - 财政年份:2018
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on infinite dimensional algebraic groups and Lie algebras, and application to quasi-periodic and aperiodic structures
无限维代数群和李代数的研究及其在准周期和非周期结构中的应用
- 批准号:
17K05158 - 财政年份:2017
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite dimensional cellular and quasi-hereditary structures, and applications to KLR algebras
无限维细胞和准遗传结构以及在 KLR 代数中的应用
- 批准号:
273426128 - 财政年份:2015
- 资助金额:
$ 25.55万 - 项目类别:
Research Grants
Long range dependence: The effect of infinite ergodic theoretical structures on limit theorems in probability
长程依赖性:无限遍历理论结构对概率极限定理的影响
- 批准号:
1506783 - 财政年份:2015
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
Verifying Software Systems using Reasoning about Programs Handling Infinite Structures
使用处理无限结构的程序推理来验证软件系统
- 批准号:
15K00305 - 财政年份:2015
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the structures and representations of infinite dimensional algebraic groups and Lie algebras, and applications to quasiperiodic structures
无限维代数群和李代数的结构和表示的研究,以及在准周期结构中的应用
- 批准号:
26400005 - 财政年份:2014
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite permutations groups and homogeneous structures
无限排列群和齐次结构
- 批准号:
431082-2012 - 财政年份:2012
- 资助金额:
$ 25.55万 - 项目类别:
University Undergraduate Student Research Awards
Infinite Antichains of Combinatorial Structures
组合结构的无限反链
- 批准号:
EP/J006130/1 - 财政年份:2012
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant