Below the Branches of Universal Trees

普世树枝下

基本信息

  • 批准号:
    EP/X017796/1
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Solving parity games is an intriguing problem that combines practical relevance with a long standing academic challenge. Its practical relevance is drawn from its prime position as the most difficult and most expensive step in automatically constructing (synthesis) and proving the correctness (model checking) of safety critical systems. It has further applications in the evaluation of nested fixed points and tropical algebra.It is academically intriguing, because the complexity of solving parity games is a long standing challenge. The theoretical understanding of the computational complexity of solving parity games is a coveted prize since the algorithmic challenge of solving parity games efficiently first arose as a fundamental and impactful open problem posed in the early 1990s. For example, the existence of a polynomial-time algorithm has been recently listed as one of the six most important open problems in the Automata Column of the ACM SIGLOG News.This high-risk project will attempt to show that solving parity games is computationally cheap.Attempting this challenge is bold (as it should be for a New Horizons project), but it is also timely: while five years ago all algorithms were exponential, a number of different approaches that are merely quasi-polynomial have recently been established. This makes the attempt to tear down the last barrier to polynomial time, and thus to efficient algorithms, is within reach for the first time.While the project is driven by scientific curiosity, it also feeds the conveyor belt of achieving higher technology readiness levels in follow-up research: once tractable algorithms are established in principle, highly efficient algorithms follow in due course, and they will help creating faster model checking and synthesis tools, and ultimately contributing to safer and better software.
解决平价博弈是一个有趣的问题,结合了长期存在的学术挑战的实际意义。它的实际意义是从它的主要位置,自动构建(合成)和证明安全关键系统的正确性(模型检查)的最困难和最昂贵的步骤。它在嵌套不动点和热带代数的计算中有进一步的应用。它在学术上很有趣,因为解决奇偶博弈的复杂性是一个长期存在的挑战。解决奇偶博弈的计算复杂性的理论理解是一个令人垂涎的奖项,因为有效解决奇偶博弈的算法挑战首先出现在20世纪90年代初提出的一个基本的和有影响力的开放问题。例如,多项式时间算法的存在性最近被ACM SIGLOG News的Automata专栏列为六个最重要的开放问题之一,这个高风险的项目将试图表明解决奇偶博弈在计算上是廉价的,尝试这一挑战是大胆的(就像新视野项目一样),但它也很及时:虽然五年前所有的算法都是指数的,但是最近已经建立了许多仅仅是准多项式的不同方法。这使得试图拆除多项式时间的最后一个障碍,从而有效的算法,是触手可及的第一次。虽然该项目是由科学的好奇心驱动,它也饲料输送带实现更高的技术准备水平在后续研究:一旦在原则上建立了易处理的算法,高效的算法将在适当的时候出现,它们将有助于创建更快的模型检查和综合工具,并最终有助于更安全和更好的软件。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Technology for Verification and Analysis - 21st International Symposium, ATVA 2023, Singapore, October 24-27, 2023, Proceedings, Part I
验证和分析自动化技术 - 第 21 届国际研讨会,ATVA 2023,新加坡,2023 年 10 月 24-27 日,会议记录,第一部分
  • DOI:
    10.1007/978-3-031-45329-8_3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Y
  • 通讯作者:
    Li Y
Semantic Flowers for Good-for-Games and Deterministic Automata
适用于游戏和确定性自动机的语义花
  • DOI:
    10.1016/j.ipl.2023.106468
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Dell'Erba D
  • 通讯作者:
    Dell'Erba D
ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30-October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023)
ECAI 2023 - 第 26 届欧洲人工智能会议,2023 年 9 月 30 日至 10 月 4 日,波兰克拉科夫 - 包括第 12 届智能系统著名应用会议 (PAIS 2023)
  • DOI:
    10.3233/faia230499
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Salimi P
  • 通讯作者:
    Salimi P
An Objective Improvement Approach to Solving Discounted Payoff Games
解决折扣支付游戏的客观改进方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sven Schewe其他文献

Editorial: special issue on synthesis
  • DOI:
    10.1007/s00236-014-0198-6
  • 发表时间:
    2014-04-19
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Doron Peled;Sven Schewe
  • 通讯作者:
    Sven Schewe
Digital features of chemical elements extracted from local geometries in crystal structures
从晶体结构中的局部几何形状提取的化学元素的数字特征
  • DOI:
    10.1039/d4dd00346b
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Andrij Vasylenko;Dmytro Antypov;Sven Schewe;Luke M. Daniels;John B. Claridge;Matthew S. Dyer;Matthew J. Rosseinsky
  • 通讯作者:
    Matthew J. Rosseinsky
Hydrogen permeation and embrittlement behavior of ferritic SOEC/SOFC interconnect candidates
铁素体 SOEC/SOFC 互连候选材料的氢渗透和脆化行为
  • DOI:
    10.1016/j.ijhydene.2024.03.337
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    David Kniep;Sven Schewe;Mario Rudolphi;Mathias Christian Galetz
  • 通讯作者:
    Mathias Christian Galetz
Bounded synthesis

Sven Schewe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sven Schewe', 18)}}的其他基金

TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development
值得信赖:安全软件开发的安全摘要
  • 批准号:
    EP/X03688X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Valuation Structures for Infinite Duration Games
无限期游戏的估值结构
  • 批准号:
    EP/Y027663/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Reinforcement Learning for Finite Horizons (ReLeaF)
有限视野强化学习 (ReLeaF)
  • 批准号:
    EP/X021513/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Solving Parity Games in Theory and Practice
从理论和实践中解决平价博弈
  • 批准号:
    EP/P020909/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Energy Efficient Control
节能控制
  • 批准号:
    EP/M027287/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Synthesis and Verification in Markov Game Structures
马尔可夫博弈结构的综合与验证
  • 批准号:
    EP/H046623/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant

相似海外基金

3D bioprinting nanofibre-reinforced vascular branches
3D生物打印纳米纤维增强血管分支
  • 批准号:
    2879497
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Touch processing in the distal branches of first-order tactile neurons
一阶触觉神经元远端分支的触摸处理
  • 批准号:
    469248
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Operating Grants
Structural dynamics of Augmin in the creation of microtubule branches. (ref: 4274)
Augmin 在微管分支创建中的结构动力学。
  • 批准号:
    2705205
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2037602
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2001247
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Studies on changes in wing flapping in response to air currents in birds and the mechanism of landing on tree branches
鸟类振翅响应气流变化及树枝降落机制研究
  • 批准号:
    20K04364
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FoMR: Microarchitecture mechanisms for handling conditional branches that are (a) very hard to predict accurately or (b) impossible to predict accurately
FoMR:用于处理 (a) 很难准确预测或 (b) 不可能准确预测的条件分支的微架构机制
  • 批准号:
    2011145
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
How do branches and leaves affect the vibration of standing trees?
树枝和树叶如何影响直立树木的振动?
  • 批准号:
    20K06123
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on de facto Constitutional Amendments through the Interpretation of the Constitutional Law by Political Branches and its Limitations
政治派别解释宪法的事实上的宪法修正案及其局限性研究
  • 批准号:
    19K01289
  • 财政年份:
    2019
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From local roots to global branches: making NDCs work for Blue Carbon at three different levels
从本地根源到全球分支机构:让国家数据中心在三个不同层面为蓝碳服务
  • 批准号:
    NE/S014128/1
  • 财政年份:
    2019
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了