GEOBEx: Geostatistical Binary Models For Extremes
GEOBEx:极值地统计二元模型
基本信息
- 批准号:EP/Y031229/1
- 负责人:
- 金额:$ 4.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Assessing risks in environmental problems, such as contamination, heatwaves, temperature, and floods, is of utmost importance for biodiversity and human health. In many cases, this need for risk assessment can be easily translated into a ``yes" or ``no" problem. For example, by answering the question: does a specific pollutant, such as PM10, exceed a high threshold?For these cases, a class of mathematical models called geostatistical binary models can help us answer many questions regarding the environmental index we are observing, and they can also help us predict the occurrence of high index values in places where we do not observe it.However, fitting these models can be difficult since we usually have an imbalanced quantity of ``yes" and ``no", which limits the amount of information.This project studies the levels of a specific pollutant (PM10) in Mexico City. The goal is to develop a new framework that combines innovative statistical models and efficient Bayesian analysis methods based on extreme-value theory. This framework aims to accurately estimate and predict the probability of rare, binary extreme events in specific regions over time.
评估污染、热浪、温度和洪水等环境问题的风险对生物多样性和人类健康至关重要。在许多情况下,这种风险评估的需要可以很容易地转化为一个"是”或"否”的问题。例如,通过回答以下问题:特定污染物(如PM10)是否超过了高阈值?对于这些情况,一类称为地质统计二进制模型的数学模型可以帮助我们回答许多关于我们观察到的环境指数的问题,它们也可以帮助我们预测在我们没有观察到的地方出现高指数值。然而,拟合这些模型可能很困难,因为我们通常有一个不平衡的数量“是”和“否”,这限制了信息量。该项目研究墨西哥城特定污染物(PM10)的水平。我们的目标是开发一个新的框架,结合创新的统计模型和有效的贝叶斯分析方法的基础上极值理论。该框架旨在准确估计和预测特定地区随着时间的推移发生罕见二元极端事件的概率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniela Andrea Castro-Camilo其他文献
Daniela Andrea Castro-Camilo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
GEOBEx: Geostatistical Binary Models For Extremes
GEOBEx:极值地统计二元模型
- 批准号:
EP/Y031954/1 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Research Grant
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
GEO OSE Track 1: Enhancing the accessibility of novel geostatistical inversion workflows for cryosphere research
GEO OSE 轨道 1:增强冰冻圈研究的新型地质统计反演工作流程的可访问性
- 批准号:
2324092 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
Assessment of uncertainty in 2D and 3D geostatistical models for use in steam assisted gravity drainage prediction
用于蒸汽辅助重力排水预测的 2D 和 3D 地质统计模型的不确定性评估
- 批准号:
556022-2020 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Alliance Grants
Using geostatistical methods to develop next-generation fisheries stock assessment models
使用地统计方法开发下一代渔业资源评估模型
- 批准号:
567724-2022 - 财政年份:2022
- 资助金额:
$ 4.93万 - 项目类别:
Postgraduate Scholarships - Doctoral
Geostatistical design and analysis of randomised evaluations with a geographic basis
基于地理的随机评估的地统计设计和分析
- 批准号:
MR/V038591/1 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
Research Grant
Towards the malaria end game in Malawi: Developing and validating an Early Warning System using geostatistical methods for heterogeneous transmission
迈向马拉维的疟疾最终游戏:使用地统计方法开发和验证用于异质传播的早期预警系统
- 批准号:
2664936 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
Studentship
Assessment of uncertainty in 2D and 3D geostatistical models for use in steam assisted gravity drainage prediction
用于蒸汽辅助重力排水预测的 2D 和 3D 地质统计模型的不确定性评估
- 批准号:
556022-2020 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
Alliance Grants