Learning to reason from uncalibrated wide angle images
学习从未经校准的广角图像进行推理
基本信息
- 批准号:567654-2021
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We witness an increasing demand of using cameras with wide field of view (FOV) lenses in many real-life applications, including security, augmented reality (AR), healthcare and autonomous systems. The increased field of view minimizes cost, energy and computation since fewer cameras are needed. The downside of using such lenses is that they require the use of lens calibration methods to obtain a lens distortion profile, which is then used to rectify the image-that is, to cancel the effects of distortion and create a perspective projection image. A wide array of such methods, ranging from classical (deterministic) to deep-learning-based have been proposed. Unfortunately, calibration is considered as a burden in most critical systems due to the many pre- and post-processing steps.In this proposal, we propose to break free from the "calibrate-and-rectify" paradigm, and instead directly reason on the wide-angle images. The goal of this project is therefore to develop a set of theoretical and experimental tools for scene understanding on images captured with uncalibrated, wide-angle lenses.
我们看到,在许多现实应用中,包括安全、增强现实(AR)、医疗保健和自主系统,对使用宽视场(FOV)镜头的摄像机的需求越来越大。增加的视野使成本、能量和计算最小化,因为需要的相机更少。使用这种透镜的缺点是,它们需要使用透镜校准方法来获得透镜畸变轮廓,然后使用该轮廓来校正图像-即取消畸变的影响并创建透视投影图像。已经提出了一系列这样的方法,从经典(确定性)到基于深度学习。不幸的是,由于许多预处理和后处理步骤,校准在大多数关键系统中被认为是一种负担。在这个提议中,我们建议打破“校准和校正”的范式,而是直接在广角图像上进行推理。因此,该项目的目标是开发一套理论和实验工具,用于对未经校准的广角镜头拍摄的图像进行场景理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalonde, JeanFrançoisJF其他文献
Lalonde, JeanFrançoisJF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalonde, JeanFrançoisJF', 18)}}的其他基金
Learning to light and relight images
学习照亮和重新照亮图像
- 批准号:
557208-2020 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
Quality control and progress monitoring from large-scale 3D point clouds
通过大规模 3D 点云进行质量控制和进度监控
- 批准号:
580274-2022 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
相似海外基金
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
Development of the Anti-Realistic Interpretation of Kant's Critique of Pure Reason
康德纯粹理性批判的反实在论解释的发展
- 批准号:
23K00018 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reading to Reason in Science (RtRiS): Teaching scientific processes through reading-to-learn in undergraduate biology lecture-based courses
科学推理 (RtRiS):通过在本科生物讲座课程中从阅读中学习来教授科学过程
- 批准号:
2235378 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Primary Care Teams Capacity Estimator (CapEs): Synthesizing evidence and developing the CapEs simulation software to support Canadian primary care policy makers and healthcare planners better reason about primary care team capacity in a time of crisis.
初级保健团队能力估算器 (CapEs):综合证据并开发 CapEs 模拟软件,以支持加拿大初级保健政策制定者和医疗保健规划者更好地推断危机时期初级保健团队的能力。
- 批准号:
475092 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Operating Grants
The dual strategy model of reason: Integrating counterexample and probabilistic reasoning
推理的双重策略模型:反例推理与概率推理的结合
- 批准号:
RGPIN-2022-03310 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Right tree, right place, right reason: developing a sustainable urban forest
正确的树、正确的地点、正确的理由:发展可持续的城市森林
- 批准号:
NE/X000443/1 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Reason and Religion in Ottoman Syria
奥斯曼叙利亚的理性与宗教
- 批准号:
AH/W006006/1 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Fellowship
"What does that animal eat?": The role of overhypotheses in how children and adults learn and reason about real-world categories
“那只动物吃什么?”:过度假设在儿童和成人如何学习和推理现实世界类别中的作用
- 批准号:
RGPIN-2022-03495 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"What does that animal eat?": The role of overhypotheses in how children and adults learn and reason about real-world categories
“那只动物吃什么?”:过度假设在儿童和成人如何学习和推理现实世界类别中的作用
- 批准号:
DGECR-2022-00257 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Launch Supplement
Right tree, right place, right reason: understanding species- specific benefits and disbenefits of urban trees
正确的树、正确的地点、正确的理由:了解城市树木特定物种的好处和坏处
- 批准号:
2744612 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship