Advancing Image-Elicitation Methods in the Social Sciences

推进社会科学中的图像启发方法

基本信息

  • 批准号:
    ES/M005941/1
  • 负责人:
  • 金额:
    $ 3.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

'Image-elicitation' refers to a range of methods in which images are the focus of a semi-structured interview between the researcher and their research participant. The images - which can be drawings, maps or diagrams but are most often photographs - are created by the interviewee before the interview in relation to the topic being researched. They are then discussed during the interview. The images can also be used in publications and exhibitions as a way of showing the participant's worldview. Image-elicitation methods (IEMs) are thus often described as 'participatory' methods, because they allow the interviewee to have a particularly active role in creating the research findings.Such methods are now very popular, and not only among social science researchers; a range of other organisations also use them. They are used, for example, by community arts practitioners to explore proposals for urban regeneration projects with the local communities likely to be affected (Bishop 2012); by tech companies to gauge public reaction to new technologies; and by health authorties to evaluate local public health strategies (Dennis et al 2009).However, despite their widespread use, the method has not developed a wider, critical commentary in the same way that, say, semi-structured interviews on their own have, or participatory research more generally. Nor have these methods utilised digital technologies to any great degree (indeed, research projects relying on photo-elicitation interviews must be one of the last remaining markets for disposable cameras).These three modules aim to advance image-elicitation methods by offering an in-depth discussion of three things:1. the ethics of working with vulnerable groups; 2. the current popularity of participatory methods in a wide range of contexts; 3. and the future of IEMs in the context of digital visual culture.Each of these issues will be discussed via an online module.The online delivery of these discussions will allow an in-depth engagement with relevant literatures and debates; it will allow module students to share their own work; it will allow them to collaborate with others in discussing both their own work and exemplar projects from elsewhere; and it will provide an opportunity for students to explore the potential of digital technologies for further developing image-elicitation research methods.Online delivery will also ensure the accessibility of these modules to the widest possibly constituency.
“图像启发”是指一系列的方法,其中图像是研究者和他们的研究参与者之间的半结构化访谈的焦点。这些图像-可以是图画、地图或图表,但最常见的是照片-由受访者在访谈前就所研究的主题创作。然后在面试中讨论。这些图像也可以用于出版物和展览,作为展示参与者世界观的一种方式。因此,形象启发法(IEM)通常被描述为“参与式”方法,因为它们允许受访者在创造研究结果中发挥特别积极的作用。这种方法现在非常流行,不仅在社会科学研究人员中,其他一系列组织也在使用它们。例如,社区艺术工作者利用这些数据,与可能受影响的当地社区探讨城市更新项目的建议(Bishop 2012);科技公司衡量公众对新技术的反应;并由卫生当局评估当地的公共卫生战略(Dennis et al 2009).然而,尽管它们被广泛使用,这种方法并没有像半结构化面试那样发展出更广泛的批判性评论,或者更普遍的参与式研究。这些方法也没有在很大程度上利用数字技术(事实上,依赖于照片启发采访的研究项目肯定是一次性相机最后剩下的市场之一)。这三个模块旨在通过提供三件事的深入讨论来推进图像启发方法:1.与弱势群体合作的道德规范; 2.目前广泛采用参与式方法; 3.以及数字视觉文化背景下的IEM的未来。每个问题都将通过一个在线模块进行讨论。这些讨论的在线交付将允许深入参与相关文献和辩论;它将允许模块学生分享自己的工作;它将允许他们与他人合作讨论自己的工作和其他地方的范例项目;它将允许他们与其他人合作讨论自己的工作和其他地方的范例项目。它将为学生提供一个机会,探索数字技术的潜力,进一步发展图像启发研究方法。在线交付也将确保这些模块的可访问性,以尽可能广泛的选区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gillian Rose其他文献

Measuring outcomes in a child psychiatry inpatient unit
测量儿童精神病住院部的结果
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Garralda;Gillian Rose;R. Dawson
  • 通讯作者:
    R. Dawson
Uptake of Prompt Access Physiotherapy for New Episodes of Back Pain Presenting in Primary Care
对初级保健中出现的新发背痛采取及时物理治疗
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Stanley;Julia S Miller;M. A. Pinnington;Gillian Rose;Michael Rose
  • 通讯作者:
    Michael Rose

Gillian Rose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gillian Rose', 18)}}的其他基金

TRAVIS: Trust and Visuality: Trust in Everyday Digital Images
TRAVIS:信任与视觉:对日常数字图像的信任
  • 批准号:
    ES/X005348/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
Smart Cities in the Making: Learning from Milton Keynes
正在形成的智慧城市:向米尔顿凯恩斯学习
  • 批准号:
    ES/N014421/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
Architectural atmospheres, branding and the social: the role of digital visualizing technologies in contemporary architectural practice
建筑氛围、品牌和社会:数字可视化技术在当代建筑实践中的作用
  • 批准号:
    ES/I038128/1
  • 财政年份:
    2011
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
Urban aesthetics: a comparison of experiences in Milton Keynes and Bedford town centres
城市美学:米尔顿凯恩斯和贝德福德市中心的经验比较
  • 批准号:
    ES/E005659/1
  • 财政年份:
    2007
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
  • 批准号:
    2335309
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Standard Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
  • 批准号:
    DE240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Discovery Early Career Researcher Award
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
  • 批准号:
    24K20830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
A versatile machine learning image recognition software for automating synchrotron Macromolecular Beamlines
用于自动化同步加速器高分子束线的多功能机器学习图像识别软件
  • 批准号:
    BB/Z514329/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
  • 批准号:
    24K20795
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Advanced image analysis of semiconductor structures
半导体结构的高级图像分析
  • 批准号:
    2905133
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Studentship
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
  • 批准号:
    BB/Y513994/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了