Advanced image analysis of semiconductor structures
半导体结构的高级图像分析
基本信息
- 批准号:2905133
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project builds on diffraction imaging technology we introduced in EPSRC grant EP/P015719/1 for a scanning electron microscopy technique (SEM), so called "electron channelling contrast imaging" (ECCI). The tools we will develop are also applicable for electron backscatter diffraction (EBSD), another non-destructive technique, but one which is better at measuring and quantifying material deformations. EBSD is commonly applied in metallurgy (for example at Strathclyde's advanced forming centre to examine welds), but within the Physics department, we deploy it for measuring semiconductor material properties, including recently demonstrating that ECCI-like data can also be obtained by this technique. This leads to large quantities of data which encodes information on the morphology, stress and strains, plus the defects that either arise from or produce strain.Interpreting this flood of data is challenging, and while for ECCI we have made progress in finding and identifying extended defects, these are only part of the story. What is needed is an understanding of the meso-scale structure of these materials, which not only requires interpreting structure and strain on a larger scale, but also unpicking the influences which produce these deformations and features.Deep learning image analysis (a core area of current AI research) can rapidly, with reasonable accuracy, pick out features in images, including locating areas of interest for various forms of microscopy. In this project, not only defects, but also regions with net changes in orientation due to the defects (so called sub-grains) will be found and studied in a largely automated way. In metallurgy, these changes are usually ascribed to 'geometrically necessary dislocations', i.e., net shift in crystal orientation because of defects.However, this concept misses contributions which cancel each other out (for example lines of dislocation with alternating Burgers' vectors) and does not explain how these structures arise (i.e. what is happening below the surface and during the growth history of the material to produce this pattern).There is also a wealth of other data available in the SEM (light emission, induced electrical current, x-ray emission, etc.) which correlates with this surface microstructure as well as revealing information from deeper in the material, but which is only occasionally compared against the structural data. The surface morphology, plus information from these other messenger sources, combined with information from samples grown to different thicknesses or thinned after growth enables modelling of how the surface resulted from deeper processes and conditions (growth front coalescence, dislocation annihilation, substrate miscut, ...). This is where other forms of machine learning (ML) and AI can be deployed to gain understanding (not just description) of these materials. By combining generative models and active learning, we can in the second stage of the project move to both simulating the material growth, but more importantly use 'counterfactual AI' to explore the influences that led to the measured data. The counterfactual approaches are normally used in methods to produce explainable models (i.e. avoiding 'black-box' behaviour of ML), but can be deployed to trace the impact and interaction of model inputs and processes. Here, various 'what if?' models are run to disentangle the core influences and predict key variables for the resulting state of the material.
该项目建立在我们在EPSRC Grant EP/P015719/1中引入的衍射成像技术,用于扫描电子显微镜技术(SEM),所谓的“电子通道对比度成像”(ECCI)。我们将开发的工具也适用于电子反向散射衍射(EBSD),这是另一种非破坏性技术,但一种旨在更好地测量和量化材料变形。 EBSD通常用于冶金中(例如,在Strathclyde的高级成型中心检查焊缝),但是在物理部门内,我们将其部署用于测量半导体材料属性,包括最近证明了ECCI样数据也可以通过这项技术获得。这导致大量数据编码有关形态,压力和菌株的信息,以及由于或产生因素而产生的缺陷。解释这一数据泛滥是具有挑战性的,而对于ECCI来说,我们在查找和识别扩展的缺陷方面取得了进展,这些只是故事的一部分。需要的是了解这些材料的中尺度结构,这不仅需要在更大范围内解释结构和压力,而且还需要取消产生这些变形和功能的影响。深入学习图像分析(当前AI研究的核心区域)可以快速,具有合理的精确性,具有出色的精度,在图像中挑选图像中的功能,包括各种形式的图像,包括各种显微镜。在这个项目中,不仅缺陷,而且还会以很大的自动化方式找到和研究由于缺陷(所谓的子元素)而导致的方向变化的区域。在冶金中,这些变化通常归因于“几何必要的脱位”,即由于缺陷而晶体取向的净移位。在SEM中可用(光发射,诱导电流,X射线发射等),与该表面微观结构相关,并揭示了材料中更深层的信息,但仅与结构数据进行比较。表面形态以及来自其他信使来源的信息,再加上从生长到不同厚度的样品或生长后变细的信息,可以建模表面如何由更深的过程和条件(生长前聚结,位错灭绝,底物误导,底物错误,...)。在这里,可以部署其他形式的机器学习(ML)和AI来获得对这些材料的理解(不仅仅是描述)。通过结合生成模型和主动学习,我们可以在项目的第二阶段进行模拟材料增长,但更重要的是使用“反事实AI”来探索导致测量数据的影响。反事实方法通常用于产生可解释模型的方法(即避免ML的“黑盒”行为),但可以部署以追踪模型输入和过程的影响和相互作用。在这里,各种各样的“如果?”模型被运行以消除核心影响,并预测材料所得状态的关键变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
面向掺氢燃烧回火精准预测的多源光谱图像特征融合分析方法
- 批准号:62305087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激光诱导击穿光谱的图像化特征重构机理及方法研究
- 批准号:62305392
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于流形分析的遥感图像视觉信息文字解译
- 批准号:62301161
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于序贯贝叶斯分析的低事例率辐射成像中图像快速识别方法研究
- 批准号:12305346
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于预训练提示学习的数字病理图像智能诊断关键技术研究
- 批准号:62371016
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Creating an advanced multi-ancestral resource and tools for short tandem repeat analysis in the AOURP researcher workbench
在 AOURP 研究人员工作台中创建先进的多祖先资源和工具,用于短串联重复分析
- 批准号:
10798717 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Surface exosome integrin profiling to predict organotropic metastasis of breast cancer
表面外泌体整合素分析预测乳腺癌的器官转移
- 批准号:
10654221 - 财政年份:2023
- 资助金额:
-- - 项目类别: