The impact of medical labour on variation in patient outcomes: evidence from English public hospitals
医疗劳动对患者结果变化的影响:来自英国公立医院的证据
基本信息
- 批准号:ES/S003118/1
- 负责人:
- 金额:$ 72.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivation: The provision of healthcare is highly labour intensive, requiring a multi-disciplinary workforce with many years of training. Quality of care provided to patients depends crucially on both the availability and quality of individual staff and how they work together in teams. The NHS is the largest employer in England, employing more than a million people at a cost of more than £50 billion in 2016 (Department of Health, 2017). But NHS pay review bodies and the UK National Audit Office have noted that evidence on the efficient allocation of existing workers is scarce and long-term workforce planning is lacking (NHS Pay Review Body, 2017; Review Body on Doctor's and Dentist's Remuneration, 2017; National Audit Office, 2016). Such evidence and planning are important in order to contain costs and ensure that patients receive the highest possible quality of care. Aims and methodology: Our proposed research will use econometric techniques and rich administrative data to identify the causal effects of the way in which the health care workforce is organised on healthcare use and patient outcomes. Our first project explores the determinants of variation in the quality and productivity of the most senior doctors (NHS consultants). It is becoming clear that there is wide variation across doctors in their patient outcomes, even within the same hospital. Some of this may be due to patient allocation across doctors, for example, giving the most experienced harder to treat patients. But this does not appear to be the only driver. Our research will seek to quantify this variation and to determine what factors associated with the doctors are associated with this variation. We will use large scale data in order to separate out the effect of the individual doctor and the hospitals in which they work by exploiting movement in doctors across hospitals during their careers. Our second and third projects examine team production. Teams are the dominant form of organisation of staff in healthcare and it is therefore important to understand the causal effects of changes to teams. Project two examines explores the impacts of anticipated and unanticipated disruptions to nursing teams on patient care and costs. To do so, we will exploit new data sources that provide detailed data on staff rotas across all wards in 5 hospitals, which can be linked to treatments and patient outcomes. Project three will explore the relationship between doctor seniority, productivity and patient outcomes by analysing a series of strikes by junior doctors in 2016 and 2017. These strikes changed the mix of staff treating patients, leading to a temporarily higher proportion of senior staff (NHS consultants) working in these teams. To conduct our research we will exploit several data sources, including rich administrative data from the Hospital Episode Statistics and newly available, highly granular, data from one large London NHS hospital group. Applications, benefits and impact: Our ultimate aim is to allow policymakers to better understand the role of the workforce in variation in productivity, hospital utilisation and patient outcomes. Our findings will provide information and tools that help policymakers improve the efficiency of the existing workforce, raise the quality of patient care, and inform future workforce planning. We will maximise impact by producing a range of outputs that communicate the results to multiple audiences. We will submit a series of academic articles to top economic journals. We will also produce a number of press-released non-technical reports, which summarise the key findings directed at journalists, policymakers and other non-academic users. In particular, we will target national policymakers, including the Department of Health and Social Care and Health Education England, and health care providers, such as individual Acute Trusts. We will also engage with health care workers and their representatives.
动机:提供医疗保健是高度劳动密集型的,需要经过多年培训的多学科劳动力。为病人提供的护理质量主要取决于个别工作人员的可用性和质量以及他们如何在团队中合作。NHS是英格兰最大的雇主,2016年雇用了超过100万人,成本超过500亿英镑(卫生部,2017年)。但NHS薪酬审查机构和英国国家审计署指出,现有工人有效分配的证据很少,缺乏长期的劳动力规划(NHS薪酬审查机构,2017;医生和牙医薪酬审查机构,2017;国家审计署,2016)。这些证据和规划对于控制成本和确保患者获得尽可能高质量的护理非常重要。目标和方法:我们拟议的研究将使用计量经济学技术和丰富的行政数据,以确定医疗保健劳动力的组织方式对医疗保健使用和患者结局的因果影响。我们的第一个项目探讨了最高级医生(NHS顾问)的质量和生产力变化的决定因素。越来越明显的是,即使在同一家医院内,医生对患者的治疗结果也存在很大差异。其中一些可能是由于医生之间的病人分配,例如,给最有经验的病人更难治疗。但这似乎不是唯一的驱动因素。我们的研究将试图量化这种变化,并确定与医生相关的因素与这种变化有关。我们将使用大规模数据,通过利用医生在职业生涯中跨医院的流动,来分离出医生个人和他们工作的医院的影响。我们的第二个和第三个项目检查团队生产。团队是医疗保健工作人员的主要组织形式,因此了解团队变化的因果影响非常重要。项目二探讨了预期和意外中断对护理团队对病人护理和成本的影响。为此,我们将开发新的数据源,提供5家医院所有病房的员工轮值的详细数据,这些数据可以与治疗和患者结果相关联。项目三将通过分析2016年和2017年初级医生的一系列罢工,探索医生资历、生产力和患者结果之间的关系。这些罢工改变了治疗病人的工作人员的组合,导致在这些团队中工作的高级工作人员(NHS顾问)的比例暂时较高。为了进行我们的研究,我们将利用几个数据源,包括丰富的管理数据,从医院事件统计和新提供的,高度粒度,数据从一个大型伦敦NHS医院集团。应用、效益和影响:我们的最终目标是让政策制定者更好地了解劳动力在生产力、医院利用率和患者结局变化中的作用。我们的研究结果将提供信息和工具,帮助政策制定者提高现有劳动力的效率,提高患者护理质量,并为未来的劳动力规划提供信息。我们将通过制作一系列输出,将结果传达给多个受众,从而最大限度地发挥影响力。我们将向顶级经济期刊提交一系列学术文章。我们还将制作一些新闻发布的非技术性报告,总结针对记者,政策制定者和其他非学术用户的主要调查结果。特别是,我们将针对国家政策制定者,包括英格兰卫生和社会护理及健康教育部,以及医疗保健提供者,如个人急性信托。我们还将与卫生保健工作者及其代表接触。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effects of doctor strikes on patient outcomes: Evidence from the English NHS
医生罢工对患者治疗结果的影响:来自英国 NHS 的证据
- DOI:10.1016/j.jebo.2023.06.011
- 发表时间:2023
- 期刊:
- 影响因子:2.2
- 作者:Stoye G
- 通讯作者:Stoye G
Team composition and productivity: evidence from nursing teams in the English NHS
团队组成和生产力:来自英国 NHS 护理团队的证据
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zaranko B
- 通讯作者:Zaranko B
Nurse staffing and inpatient mortality in the English National Health Service: a retrospective longitudinal study.
- DOI:10.1136/bmjqs-2022-015291
- 发表时间:2023-05
- 期刊:
- 影响因子:5.4
- 作者:Zaranko, Ben;Sanford, Natalie Jean;Kelly, Elaine;Rafferty, Anne Marie;Bird, James;Mercuri, Luca;Sigsworth, Janice;Wells, Mary;Propper, Carol
- 通讯作者:Propper, Carol
Cost of living and the impact on nursing labour outcomes in NHS acute trusts
NHS 急性信托基金的生活成本及其对护理分娩结果的影响
- DOI:10.1920/re.ifs.2021.0185
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Propper C
- 通讯作者:Propper C
The distribution of doctor quality: evidence from cardiologists in England
医生素质的分布:来自英国心脏病专家的证据
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stoye G
- 通讯作者:Stoye G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carol Propper其他文献
The Impact of Internet Access on COVID-19 Spread in Indonesia
互联网接入对印度尼西亚 COVID-19 传播的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Johannes S Kunz;Carol Propper;Trong‐Anh Trinh - 通讯作者:
Trong‐Anh Trinh
Competition, equity and quality in public services
- DOI:
10.1016/j.euroecorev.2024.104719 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Maija Halonen-Akatwijuka;Carol Propper - 通讯作者:
Carol Propper
Wolves in sheep’s clothing: Is non-profit status used to signal quality?
- DOI:
10.1016/j.jhealeco.2017.06.011 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Daniel B. Jones;Carol Propper;Sarah Smith - 通讯作者:
Sarah Smith
Competition and decentralisation in government bureaucracies
- DOI:
10.1016/j.jebo.2007.08.009 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:
- 作者:
Maija Halonen-Akatwijuka;Carol Propper - 通讯作者:
Carol Propper
Do responses to news matter? Evidence from interventional cardiology.
对新闻的反应重要吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.5
- 作者:
Daniel Avdic;Stephanie von Hinke;Bo Lagerqvist;Carol Propper;J. Vikström - 通讯作者:
J. Vikström
Carol Propper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carol Propper', 18)}}的其他基金
Understanding the impacts of COVID-19 on the provision of NHS health care and patient outcomes
了解 COVID-19 对 NHS 医疗保健服务和患者治疗结果的影响
- 批准号:
ES/V009508/1 - 财政年份:2020
- 资助金额:
$ 72.3万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于循证医学本体论的临床元数据语言研究
- 批准号:30972549
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
完善城镇居民基本医疗保险的"基本医疗服务包"研究
- 批准号:70873131
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
基于计算模型的医用X线最优曝光控制技术的研究
- 批准号:60472004
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Research Grant
A novel medical device for reducing chemotherapy-induced peripheral neuropathy in the hands
一种减少化疗引起的手部周围神经病变的新型医疗设备
- 批准号:
MR/Z503800/1 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Research Grant
SBIR Phase I: Development of wearable medical device to detect and treat opioid overdose.
SBIR 第一阶段:开发可穿戴医疗设备来检测和治疗阿片类药物过量。
- 批准号:
2335577 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
- 批准号:
10103504 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Collaborative R&D
I-Corps: A medical device to shield the spinal cord and provide structural stability following decompression and fusion procedures
I-Corps:一种保护脊髓并在减压和融合手术后提供结构稳定性的医疗设备
- 批准号:
2409647 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant