Leveraging digital phenotyping to monitor and support patients with vision loss beyond the clinic
利用数字表型来监测和支持诊所以外的视力丧失患者
基本信息
- 批准号:ES/W006510/1
- 负责人:
- 金额:$ 6.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Glaucoma is a chronic progressive ophthalmic disease causing non-recoverable loss of vision. Age is a major risk factor, affecting ~3.3% of those over the age of 70 in the UK. The number of people diagnosed with glaucoma is projected to rise dramatically over the next decade. For example, by 2035 there will be 8.9 million people aged over 75 in the UK, an increase of 80% compared to 2010. Epidemiological modelling predicts the number of people with glaucoma in the UK will grow by 44% by 2035. The rising glaucoma caseload creates a landscape filled with complex challenges for the hospital eye service. The problem is illustrated by national statistics that consistently identify ophthalmology as the busiest outpatient service in the NHS, with over 7.9 million hospital attendances in England in 2019-2020.Preserving visual function in people with glaucoma requires a targeted approach, enabled by digital innovation. Technological advances now allow some populations to be monitored remotely using home-based or wearable equipment. Home monitoring is an attractive prospect for a number of reasons, particularly if clinically useful data can be captured to allow earlier detection of disease progression. The general focus of research in this area has been directed at creating home-based versions of tests that would usually take place in clinic, such as laptop-based visual field testing. Evidence surrounding glaucoma home monitoring is promising, however this strategy does little to reflect the 'real-world' impact of glaucoma, and the clinical practicality of this approach remains to be seen. An alternative strategy for offsetting the glaucoma burden is to monitor patterns in patients' day-to-day activities using routinely gathered patient-generated data. For example, smartphone devices and wearables exert a transformative power by creating opportunity for collection of valuable health information, enabling informed clinical decision-making and better patient outcomes. Digital phenotyping is an emerging concept in the digital health sphere. It is defined as the moment-by-moment quantification of the individual-level human phenotype, using personal digital devices. In this approach, patients download and launch a smartphone application that collects both active data (e.g. surveys) and passive data (e.g. global positioning system [GPS] data). Care providers can track changes in parameters for monitoring purposes, moving beyond predominantly curative responsibilities and engaging in proactive, predictive and preventive action. To date, digital phenotyping has primarily been applied within the psychiatry sector to monitor depressive symptoms. Yet, digital phenotyping could be a source of significant clinical utility for monitoring people with vision impairment.Digital phenotyping offers a route to innovation by leveraging technology to measure and monitor the real-world impact of glaucoma. In order to stimulate this change in how patient outcomes are reviewed, there is a need to generate evidence to determine the viability of this approach. The proposed project will be a feasibility and acceptability study investigating the potential for using digital phenotyping in glaucoma care. A mixed methods approach will be used to help clarify what parameters will be useful to measure (e.g. mobility) and how well digital phenotyping is received by the target population. Research questions will be surrounding aspects such as willingness of participants to engage with digital phenotyping, adherence/compliance, availability and usefulness of the data, and qualitative feedback on user experience.
青光眼是一种慢性进行性眼科疾病,会导致不可恢复的视力丧失。年龄是一个主要风险因素,影响英国 70 岁以上人群的约 3.3%。预计未来十年被诊断患有青光眼的人数将急剧增加。例如,到 2035 年,英国 75 岁以上的人口将达到 890 万,比 2010 年增加 80%。流行病学模型预测,到 2035 年,英国青光眼患者数量将增长 44%。不断增加的青光眼病例给医院眼科服务带来了复杂的挑战。国家统计数据说明了这个问题,该数据一致认为眼科是 NHS 中最繁忙的门诊服务,2019 年至 2020 年英国医院就诊人数超过 790 万人次。保护青光眼患者的视觉功能需要通过数字创新实现有针对性的方法。现在,技术进步使得一些人群可以使用家用或可穿戴设备进行远程监控。出于多种原因,家庭监测是一个有吸引力的前景,特别是如果可以捕获临床有用的数据以便更早地检测疾病进展。该领域研究的总体重点是创建通常在临床进行的家庭测试版本,例如基于笔记本电脑的视野测试。关于青光眼家庭监测的证据是有希望的,但是这种策略几乎不能反映青光眼的“现实世界”影响,并且这种方法的临床实用性还有待观察。抵消青光眼负担的另一种策略是使用定期收集的患者生成的数据来监测患者的日常活动模式。例如,智能手机设备和可穿戴设备通过创造收集有价值的健康信息的机会来发挥变革性的力量,从而实现明智的临床决策和更好的患者治疗结果。数字表型分析是数字健康领域的一个新兴概念。它被定义为使用个人数字设备对个体水平的人类表型进行即时量化。在这种方法中,患者下载并启动智能手机应用程序,该应用程序收集主动数据(例如调查)和被动数据(例如全球定位系统 [GPS] 数据)。护理提供者可以出于监测目的跟踪参数变化,超越主要的治疗责任,并采取主动、预测和预防行动。迄今为止,数字表型分析主要应用于精神病学领域来监测抑郁症状。然而,数字表型分析可能成为监测视力障碍患者的重要临床实用性来源。数字表型分析通过利用技术来测量和监测青光眼对现实世界的影响,提供了一条创新之路。为了促进患者治疗结果审查方式的改变,需要生成证据来确定这种方法的可行性。拟议的项目将是一项可行性和可接受性研究,调查在青光眼护理中使用数字表型分析的潜力。将使用混合方法来帮助阐明哪些参数可用于测量(例如流动性)以及目标人群对数字表型的接受程度。研究问题将围绕参与者参与数字表型分析的意愿、遵守/合规性、数据的可用性和有用性以及用户体验的定性反馈等方面。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
"It would help people to help me": Acceptability of an eHealth App for young people with visual impairment and their families
“这会帮助人们帮助我”:电子健康应用程序对视力障碍年轻人及其家人的接受度
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Higgins B
- 通讯作者:Higgins B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Jones其他文献
Untangling interactions between <em>Bitis</em> vipers and their prey using coagulotoxicity against diverse vertebrate plasmas
- DOI:
10.1016/j.toxicon.2022.06.012 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Nicholas J. Youngman;Joshua Llinas;Mark Haworth;Amber Gillett;Lee Jones;Andrew A. Walker;Bryan G. Fry - 通讯作者:
Bryan G. Fry
Analyzing pain patterns in the emergency department: Leveraging clinical text deep learning models for real-world insights
- DOI:
10.1016/j.ijmedinf.2024.105544 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
James A Hughes;Yutong Wu;Lee Jones;Clint Douglas;Nathan Brown;Sarah Hazelwood;Anna-Lisa Lyrstedt;Rajeev Jarugula;Kevin Chu;Anthony Nguyen - 通讯作者:
Anthony Nguyen
LONG-TERM IMPAIRMENT OF CARDIORESPIRATORY FITNESS AND LEFT VENTRICULAR SYSTOLIC FUNCTION AFTER TRASTUZUMAB CARDIOTOXICITY IN HER2-POSITIVE BREAST CANCER SURVIVORS
- DOI:
10.1016/s0735-1097(19)31347-6 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Anthony F. Yu;Lee Jones;Chau Dang;Richard Steingart;Jennifer Liu - 通讯作者:
Jennifer Liu
Hand Spinning E-textile Yarns: Understanding the Craft Practices of Hand Spinners and Workshop Explorations with E-textile Fibers and Materials
手纺电子纺织纱线:了解手纺工的工艺实践以及电子纺织纤维和材料的车间探索
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lee Jones;Ahmed Awad;Marion Koelle;Sara Nabil - 通讯作者:
Sara Nabil
Implementing a nurse-enabled, integrated, shared-care model involving specialists and general practitioners in early breast cancer post-treatment follow-up (EMINENT): a single-centre, open-label, phase 2, parallel-group, pilot, randomised, controlled trial
实施由护士推动的、整合的、共享护理模式,涉及专家和全科医生在早期乳腺癌治疗后随访中的应用(EMINENT):一项单中心、开放标签、2 期、平行组、试点、随机对照试验
- DOI:
10.1016/j.eclinm.2025.103090 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:10.000
- 作者:
Raymond J. Chan;Fiona Crawford-Williams;Chad Yixian Han;Lee Jones;Alexandre Chan;Daniel McKavanagh;Marissa Ryan;Christine Carrington;Rebecca L. Packer;Megan Crichton;Nicolas H. Hart;Emma McKinnell;Melissa Gosper;Juanita Ryan;Bethany Crowe;Ria Joseph;Carolyn Ee;Jane Lee;Steven M. McPhail;Katharine Cuff;Jon Emery - 通讯作者:
Jon Emery
Lee Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Jones', 18)}}的其他基金
UK shrink-swell hazard under climate-change-driven weather extremes
气候变化驱动的极端天气下的英国收缩-膨胀危险
- 批准号:
NE/X016234/1 - 财政年份:2022
- 资助金额:
$ 6.3万 - 项目类别:
Research Grant
How Do Economic Sanctions (Not) Work?
经济制裁(不)如何发挥作用?
- 批准号:
ES/I010157/1 - 财政年份:2011
- 资助金额:
$ 6.3万 - 项目类别:
Research Grant
Mathematical Sciences: Approximation, Estimation, and Computation Properties of Neural Networks and Related Parsimonious Models
数学科学:神经网络和相关简约模型的近似、估计和计算特性
- 批准号:
9505199 - 财政年份:1995
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Projection Pursuit, Neural Networks and Pattern Recognition
数学科学:投影寻踪、神经网络和模式识别主题
- 批准号:
9202161 - 财政年份:1992
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
相似国自然基金
超灵敏高分辨的Digital-CRISPR技术用于免扩增的多重核酸检测
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Digital Twin的数控机床智能运行维护方法研究
- 批准号:51875323
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于数字PCR(digital-PCR)技术的耳聋无创产前检测研究
- 批准号:LQ19H040016
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Digital LAMP技术的循环肿瘤细胞检测和分型新方法研究
- 批准号:81702102
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于表面工程的外泌体digital PCR定量分析体系的构建及转化医学研究
- 批准号:81702959
- 批准年份:2017
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
数字版权管理中数字权利传播的小世界网络建模及风险控制
- 批准号:61003234
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于生命节律的数字化口服给药系统及方法的研究
- 批准号:30700160
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Using Functional Neuroimaging and Smartphone Digital Phenotyping to Understand the Emergence of Internalizing Illness
使用功能神经影像和智能手机数字表型来了解内化疾病的出现
- 批准号:
10749114 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Integrating Genomic Risk Assessment for Chronic Disease Management in a Diverse Population
整合基因组风险评估以进行不同人群的慢性病管理
- 批准号:
10852376 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Beginnings: Experiential Learning on Digital Agriculture and Plant Phenotyping Technologies (DAPPT)
起点:数字农业和植物表型技术的体验式学习 (DAPPT)
- 批准号:
2322535 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Cooperative Agreement
Deep Phenotyping of Heavy Drinking in Young Adults with Behavioral Scales, Neuropsychological Tasks, and Smartphone Sensing Technology
通过行为量表、神经心理学任务和智能手机传感技术对年轻人酗酒进行深度表型分析
- 批准号:
10585512 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
The impact of levodopa-induced dyskinesia on the physical and social participation of patients with advanced Parkinson's disease and their spousal caregiver: a digital phenotyping study.
左旋多巴引起的运动障碍对晚期帕金森病患者及其配偶照顾者的身体和社会参与的影响:一项数字表型研究。
- 批准号:
477646 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Operating Grants
Use of Digital Phenotyping to Understand Digital Media Influence on Adolescent Substance Use
使用数字表型来了解数字媒体对青少年药物使用的影响
- 批准号:
10661933 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Yale Center for Metabolic Phenotyping in Live Models of Obesity and Diabetes
耶鲁大学肥胖和糖尿病活体模型代谢表型中心
- 批准号:
10579071 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Technology Enabled Strategies to Promote Treatment Adherence in Liver Transplant: The TEST Trial
促进肝移植治疗依从性的技术策略:TEST 试验
- 批准号:
10339846 - 财政年份:2022
- 资助金额:
$ 6.3万 - 项目类别:
Digital Phenotyping of Anxiety and Anxiety-Related Alcohol Comorbidity and Treatment
焦虑和焦虑相关酒精合并症的数字表型分析和治疗
- 批准号:
10447935 - 财政年份:2022
- 资助金额:
$ 6.3万 - 项目类别: