Mathematical Sciences: Approximation, Estimation, and Computation Properties of Neural Networks and Related Parsimonious Models
数学科学:神经网络和相关简约模型的近似、估计和计算特性
基本信息
- 批准号:9505199
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposals: DMS 9505199 PIs: Lee Jones and Yuly Makovoz Institution: University of Massachusetts at Lowell Title: APPROXIMATION, ESTIMATION, AND COMPUTATION PROPERTIES OF NEURAL NETWORKS AND RELATED PARSIMONIOUS MODELS Abstract: Artificial neural networks and related parsimonious models for function approximation and estimation have attracted recent attention in science and engineering. Work by the authors has uncovered several interesting aspects of these methods. Approximation bounds have been obtained by methods taken from the probability theory of empirical processes, including bounds on the average squared error and the maximal error of neural network and related approximations. These approximation bounds reveal a rate of convergence that is insensitive to the dimension of the input space for certain nonparametric (infinite dimensional) classes of functions, specified via the closure of convex hulls of finite dimensional families of functions. As a consequence accurate statistical estimation of functions in these nonparametric classes is possible without recourse to exponentially large sample sizes. Unfortunately, computation of neural net estimates can be an extremely difficult task. The investigators study how the problems of accurate approximation, estimation, and computation are intertwined. In this research they investigate fundamental mathematical, statistical, and computational limits of the capacity to approximate and to estimate these functions accurately by computationally feasible algorithms. Empirical modeling techniques used in a variety of scientific and engineering tasks deal with the problem of how to combine a large number of observable quantities to best predict or approximate a response variable. The input - response relation may be described by a rather complicated function, and it may be desirable to approximate it by a combination of a small number of elementary, comparatively s impler, functions. These models differ from classical techniques in approximation and statistical estimation in that the functions that are combined are not fixed in advance, but rather selected and adjusted according to what is known or observed concerning the intended response variable so as to provide the best fit. The investigators are quantifying the mathematical and statistical advantages of these adjustable selections. Artificial neural networks and related techniques are at the heart of modern models for adaptive and high performance computation. The investigators study the limits of what is computationally feasible with these models. The ubiquity of requirements for accurate prediction and empirical modeling for use of the scientific method in general and for nationally strategic topics in particular are motivating factors in this research.
提案:DMS 9505199 PI:Lee Jones和Yuly Makovoz机构:马萨诸塞州洛厄尔大学标题: 近似、估计和变换性质 神经网络及其相关的简约模型 摘要: 人工神经网络与函数的简约模型 近似和估计最近在科学上引起了注意 与工程学 作者的工作揭示了几个有趣的 这些方法的各个方面。 近似界已获得由 方法取自经验过程的概率论, 包括平均平方误差和最大误差的界限, 神经网络和相关的近似。 这些近似边界 揭示了一个收敛的速度,是不敏感的维度, 某些非参数(无限维)类的输入空间 函数,通过有限维函数族的凸包的闭包指定。 因此,准确的统计估计 在这些非参数类中的函数是可能的, 到指数级的大样本量。 不幸的是,神经网络的计算 净估计可能是一项极其困难的任务。 研究人员研究 精确近似、估计和计算的问题是如何 交织在一起 在这项研究中,他们研究了基础数学, 统计和计算能力的极限, 通过计算上可行的方法来准确地估计这些函数, 算法 在各种科学和工程任务中使用的经验建模技术处理如何将大量可观测量联合收割机组合以最佳地预测或近似的问题 响应变量。 输入-响应关系可以被描述为 通过一个相当复杂的功能,它可能是可取的, 用少量的 基本的,比较简单的功能。这些模型 与近似和统计估计中的经典技术的不同之处在于, 不是事先固定的,而是根据情况选择和调整的。 关于预期响应变量的已知或观察 以便提供最佳配合。 调查人员正在量化 这些可调整的选择的数学和统计优势。 人工神经网络和相关技术是用于自适应和高性能计算的现代模型的核心。 研究人员研究了计算的极限, 这些模型都是可行的。 普遍存在的准确预测和经验建模的要求,使用科学方法,特别是国家战略主题是本研究的激励因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Jones其他文献
LONG-TERM IMPAIRMENT OF CARDIORESPIRATORY FITNESS AND LEFT VENTRICULAR SYSTOLIC FUNCTION AFTER TRASTUZUMAB CARDIOTOXICITY IN HER2-POSITIVE BREAST CANCER SURVIVORS
- DOI:
10.1016/s0735-1097(19)31347-6 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Anthony F. Yu;Lee Jones;Chau Dang;Richard Steingart;Jennifer Liu - 通讯作者:
Jennifer Liu
Untangling interactions between <em>Bitis</em> vipers and their prey using coagulotoxicity against diverse vertebrate plasmas
- DOI:
10.1016/j.toxicon.2022.06.012 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Nicholas J. Youngman;Joshua Llinas;Mark Haworth;Amber Gillett;Lee Jones;Andrew A. Walker;Bryan G. Fry - 通讯作者:
Bryan G. Fry
Analyzing pain patterns in the emergency department: Leveraging clinical text deep learning models for real-world insights
- DOI:
10.1016/j.ijmedinf.2024.105544 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
James A Hughes;Yutong Wu;Lee Jones;Clint Douglas;Nathan Brown;Sarah Hazelwood;Anna-Lisa Lyrstedt;Rajeev Jarugula;Kevin Chu;Anthony Nguyen - 通讯作者:
Anthony Nguyen
Hand Spinning E-textile Yarns: Understanding the Craft Practices of Hand Spinners and Workshop Explorations with E-textile Fibers and Materials
手纺电子纺织纱线:了解手纺工的工艺实践以及电子纺织纤维和材料的车间探索
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lee Jones;Ahmed Awad;Marion Koelle;Sara Nabil - 通讯作者:
Sara Nabil
Implementing a nurse-enabled, integrated, shared-care model involving specialists and general practitioners in early breast cancer post-treatment follow-up (EMINENT): a single-centre, open-label, phase 2, parallel-group, pilot, randomised, controlled trial
实施由护士推动的、整合的、共享护理模式,涉及专家和全科医生在早期乳腺癌治疗后随访中的应用(EMINENT):一项单中心、开放标签、2 期、平行组、试点、随机对照试验
- DOI:
10.1016/j.eclinm.2025.103090 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:10.000
- 作者:
Raymond J. Chan;Fiona Crawford-Williams;Chad Yixian Han;Lee Jones;Alexandre Chan;Daniel McKavanagh;Marissa Ryan;Christine Carrington;Rebecca L. Packer;Megan Crichton;Nicolas H. Hart;Emma McKinnell;Melissa Gosper;Juanita Ryan;Bethany Crowe;Ria Joseph;Carolyn Ee;Jane Lee;Steven M. McPhail;Katharine Cuff;Jon Emery - 通讯作者:
Jon Emery
Lee Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Jones', 18)}}的其他基金
UK shrink-swell hazard under climate-change-driven weather extremes
气候变化驱动的极端天气下的英国收缩-膨胀危险
- 批准号:
NE/X016234/1 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Leveraging digital phenotyping to monitor and support patients with vision loss beyond the clinic
利用数字表型来监测和支持诊所以外的视力丧失患者
- 批准号:
ES/W006510/1 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Research Grant
How Do Economic Sanctions (Not) Work?
经济制裁(不)如何发挥作用?
- 批准号:
ES/I010157/1 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Mathematical Sciences: Topics in Projection Pursuit, Neural Networks and Pattern Recognition
数学科学:投影寻踪、神经网络和模式识别主题
- 批准号:
9202161 - 财政年份:1992
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
- 批准号:
0938235 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Orthogonal Polynomials and Approximation Theory
数学科学:正交多项式和逼近论研究
- 批准号:
9706695 - 财政年份:1997
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Approximation with Constraints
数学科学:带约束的近似
- 批准号:
9705638 - 财政年份:1997
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9623251 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation in Stochastic Programming and Other Variational Problems
数学科学:随机规划和其他变分问题中的近似
- 批准号:
9625787 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Approximation Problems in Differential Equations
数学科学:微分方程中的一些近似问题
- 批准号:
9625813 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Viscous Incompressible Magnetohydrodynamics: Analysis and Numerical Approximation
数学科学:粘性不可压缩磁流体动力学:分析和数值逼近
- 批准号:
9625096 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Stability and Approximation for Distributed Parameter Systems
数学科学:分布式参数系统的稳定性和逼近
- 批准号:
9696239 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Multivariate Approximation
数学科学:多元逼近
- 批准号:
9626319 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Poisson Approximation, Markov Chains, and Random Trees
数学科学:泊松近似、马尔可夫链和随机树
- 批准号:
9626597 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant