The Optimal Deployment of Antibiotics: Whether, How and When to Switch
抗生素的最佳配置:是否、如何以及何时切换
基本信息
- 批准号:G0802611/1
- 负责人:
- 金额:$ 11.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal control is a term used to describe the research that made much of the space-race possible. Neil Armstrong s moon landing was made possible by understanding how to manipulate a space rocket with minimal fuel expenditure. The idea behind this work is to take the same basic engineering science and to apply it by asking whether the evolution of resistance that blights antibiotic treatments can be somehow minimised by understanding how to deploy those antibiotics in an optimal way.We can already do this, in theoretical terms, and we are able to create weird and wonderful ways of deploying antibiotic to a biological system in order to maximise its health. However, a lot of biological theory based on mathematical modeling has been proposed in the past that turned out to be plain wrong when the right experiments were done. This is especially true of population biology, the branch of biology that treats interacting populations of organisms such as microbes and other cells. Now, the mathematical modeling in this work is a mix of population biology, cell biology and genetics; while space researchers have Newton s laws to lean on, population biology has no intrinsic, physical laws. As a result, it is sometimes a feature of the field that theoretical concepts stick before they are truly tested. So, we want to test our theories to destruction to make sure they work in the lab before we eventually go on to try and persuade medical practitonners that cycling different antibiotics is a good thing to do. Certainly, it is better to cycle than to mix them into a single treatment, at least that s what our theories always say. This research will go a long way to proving that what works in theory, also works in the lab, and hopefully in practise too.
最优控制是一个用来描述使太空竞赛成为可能的研究的术语。尼尔·阿姆斯特朗的登月是通过了解如何以最少的燃料消耗操纵太空火箭而实现的。这项工作背后的想法是利用同样的基础工程科学,并通过了解如何以最佳方式使用抗生素来最大限度地减少破坏抗生素治疗的耐药性进化来应用它。我们已经可以在理论上做到这一点,我们能够创造出奇怪而奇妙的方式将抗生素部署到生物系统中,以最大限度地提高其健康。然而,过去提出的许多基于数学建模的生物学理论在正确的实验中被证明是错误的。种群生物学尤其如此,这是生物学的分支,研究微生物和其他细胞等生物种群的相互作用。现在,这项工作中的数学建模是群体生物学、细胞生物学和遗传学的混合;虽然空间研究人员有牛顿定律可以依靠,但群体生物学没有内在的物理定律。因此,有时候,理论概念在真正得到检验之前就已经存在了,这是该领域的一个特点。所以,我们想测试我们的理论破坏,以确保他们在实验室工作之前,我们最终继续尝试和说服医疗界的抗生素循环是一件好事。当然,最好是循环,而不是混合成一个单一的治疗,至少这是我们的理论总是说。这项研究将大大有助于证明理论上可行的方法在实验室中也有效,希望在实践中也有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Beardmore其他文献
Robert Beardmore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Beardmore', 18)}}的其他基金
Quantifying Antibiotic Resistance Evolution in Clinically-Relevant Microbes
量化临床相关微生物的抗生素耐药性演变
- 批准号:
EP/N033671/1 - 财政年份:2016
- 资助金额:
$ 11.46万 - 项目类别:
Fellowship
Bacteriophage and Antibiotic Resistance: a Mathematical and Imaging Approach
噬菌体和抗生素耐药性:数学和成像方法
- 批准号:
EP/I00503X/1 - 财政年份:2011
- 资助金额:
$ 11.46万 - 项目类别:
Fellowship
Bacteriophage and Antibiotic Resistance: a Mathematical and Imaging Approach (C-DIP enhancement)
噬菌体和抗生素耐药性:数学和成像方法(C-DIP 增强)
- 批准号:
EP/I018263/1 - 财政年份:2010
- 资助金额:
$ 11.46万 - 项目类别:
Research Grant
相似海外基金
High Performance Reefable Wingsail Rig Design and Pre-deployment Trial
高性能可折叠翼帆装置设计和预部署试验
- 批准号:
10092779 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Collaborative R&D
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
- 批准号:
EP/Z531261/1 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Research Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Optimising deployment of sterile insect technique to control spotted wing drosophila in blackberries: Black-Spot
优化部署昆虫不育技术来控制黑莓中的斑翅果蝇:Black-Spot
- 批准号:
10097749 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Collaborative R&D
REAL-WORLD IMPLEMENTATION, DEPLOYMENT AND VALIDATION OF EARLY DETECTION TOOLS AND LIFESTYLE ENHANCEMENT (AD-RIDDLE)
早期检测工具和生活方式增强 (AD-Riddle) 的实际实施、部署和验证
- 批准号:
10106509 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
EU-Funded
Optimising Data Integration for Sustainable Deployment of Zero Emission Vehicles in UK
优化数据集成以实现英国零排放车辆的可持续部署
- 批准号:
10114156 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
SME Support
Unlocking Accessibility - Deployment
解锁可访问性 - 部署
- 批准号:
10099178 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Collaborative R&D
AD-RIDDLE: Real-World Implementation, Deployment And Validation Of Early Detection Tools And Lifestyle Enhancement
AD-RIDDLE:早期检测工具和生活方式增强的实际实施、部署和验证
- 批准号:
10083470 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
EU-Funded
Interface Engineering for Terawatt Scale Deployment of Perovskite-on-Silicon Tandem Solar Cells
硅基钙钛矿串联太阳能电池太瓦级部署的接口工程
- 批准号:
EP/X037169/1 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Research Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant














{{item.name}}会员




