Methods for modelling repeated measures in a lifecourse framework
在生命历程框架中对重复测量进行建模的方法
基本信息
- 批准号:G1000726/1
- 负责人:
- 金额:$ 55.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Doctors are increasingly interested in long-term influences on health. For example, it is thought that people who were born small as babies, and grew faster during childhood, may be more likely to suffer cardiovascular disease in later life. Longitudinal studies ? studies in which individuals are followed over periods of many months or years ? are of great importance in understanding how aspects of people?s childhood lifestyle or environment influence their later health and wellbeing. When one measure (e.g. weight) is made several times on the same individual, the values at different ages are likely to be related. This raises difficult issues in the analysis of data from longitudinal studies, and failing to address these appropriately can lead to results that are biased (they differ from the results that would be observed if the analysis had been appropriate) or lead to inappropriate conclusions (the results of the analyses are interpreted incorrectly). Statistical methods that do address these issues have been proposed, and have the potential to decrease bias and increase ease of interpretation in analyses of longitudinal studies. However, these methods can be highly complex and difficult to apply. We will develop solutions to some of the problems with applying these methods, including developing strategies for modelling change over time (e.g. growth in childhood), and relating this change over time to later outcomes. We will incorporate our new methods into existing software, to maximise their future use, as well as publishing the results in scientific journals.
医生们越来越关注对健康的长期影响。例如,人们认为,婴儿出生时身材矮小,儿童时期生长较快的人,在以后的生活中更有可能患心血管疾病。纵向研究?研究中对个体进行了数月或数年的跟踪?对了解人类的各个方面都很重要儿童的生活方式或环境影响他们以后的健康和幸福。当一个测量(例如体重)在同一个人身上进行多次测量时,不同年龄的值可能是相关的。这在纵向研究的数据分析中提出了困难的问题,如果不能适当地解决这些问题,可能会导致有偏见的结果(它们与分析适当时观察到的结果不同)或导致不适当的结论(分析结果被错误地解释)。已经提出了解决这些问题的统计方法,并有可能减少偏倚,增加纵向研究分析的解释。然而,这些方法可能非常复杂并且难以应用。我们将制定一些问题的解决方案,应用这些方法,包括制定战略,随着时间的推移(例如,在童年的增长)建模变化,并随着时间的推移,这种变化与以后的结果。我们将把我们的新方法整合到现有的软件中,以最大限度地提高其未来的使用价值,并将结果发表在科学期刊上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate Tilling其他文献
USING REPEATED MEASURES TO IMPROVE THE PRECISION AND POWER OF GENOME-WIDE ASSOCIATION STUDIES (GWAS)
使用重复测量来提高全基因组关联研究(GWAS)的精度和功效
- DOI:
10.1016/j.euroneuro.2024.08.090 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Alex Kwong;Mark Adams;Poppy Grimes;Gareth Griffith;Tim Morris;Kate Tilling;Andrew McIntosh - 通讯作者:
Andrew McIntosh
COMBINING MENDELIAN RANDOMISATION WITH DEPRESSION TRAJECTORIES TO IDENTIFY DEVELOPMENTALLY SPECIFIC PREDICTORS OF CHANGE IN DEPRESSIVE SYMPTOMS
将孟德尔随机化与抑郁轨迹相结合,以确定抑郁症状变化的发展特异性预测因子
- DOI:
10.1016/j.euroneuro.2024.08.092 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Robyn Wootton;Richard Parker;Michael Lawton;Kate Tilling - 通讯作者:
Kate Tilling
Quantitative bias analysis for mismeasured variables in health research: a review of software tools
- DOI:
10.1186/s12874-025-02635-w - 发表时间:
2025-08-01 - 期刊:
- 影响因子:3.400
- 作者:
Codiexa0J.xa0C. Wood;Kate Tilling;Jonathanxa0W. Bartlett;Rachaelxa0A. Hughes - 通讯作者:
Rachaelxa0A. Hughes
Estimation of the incidence of stroke using a capture-recapture model including covariates.
使用包含协变量的捕获-再捕获模型估计中风的发病率。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:7.7
- 作者:
Kate Tilling;Jonathan A. C. Sterne;C. Wolfe - 通讯作者:
C. Wolfe
W90. USING ALLELE SCORES TO IDENTIFY CONFOUNDING BY REVERSE CAUSATION IN EPIDEMIOLOGICAL STUDIES OF ALCOHOL CONSUMPTION
- DOI:
10.1016/j.euroneuro.2021.08.173 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Hannah Sallis;Tom Palmer;Kate Tilling;George Davey Smith;Marcus Munafo - 通讯作者:
Marcus Munafo
Kate Tilling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate Tilling', 18)}}的其他基金
Statistical Methods for Causal Inference
因果推断的统计方法
- 批准号:
MC_UU_00032/2 - 财政年份:2023
- 资助金额:
$ 55.38万 - 项目类别:
Intramural
Development of miDOC: an expert system and methodology for multiple imputation
miDOC 的开发:多重插补的专家系统和方法
- 批准号:
MR/V020641/1 - 财政年份:2021
- 资助金额:
$ 55.38万 - 项目类别:
Research Grant
Statistical Methods for Improving Causal Analyses
改进因果分析的统计方法
- 批准号:
MC_UU_00011/3 - 财政年份:2018
- 资助金额:
$ 55.38万 - 项目类别:
Intramural
Modelling within-individual variation in repeated continuous exposures
对重复连续暴露中的个体差异进行建模
- 批准号:
MR/N027485/1 - 财政年份:2017
- 资助金额:
$ 55.38万 - 项目类别:
Research Grant
Development of a multilevel and mixture-model framework for modelling epigenetic changes over time (resubmission)
开发多层次混合模型框架,用于模拟表观遗传随时间的变化(重新提交)
- 批准号:
MR/M025020/1 - 财政年份:2016
- 资助金额:
$ 55.38万 - 项目类别:
Research Grant
Developing and disseminating robust methods for handling missing data in epidemiological studies
开发和传播处理流行病学研究中缺失数据的稳健方法
- 批准号:
G0900724/1 - 财政年份:2009
- 资助金额:
$ 55.38万 - 项目类别:
Research Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Collaborative R&D
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Collaborative R&D
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Collaborative R&D
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Fellowship
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Fellowship
Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
- 批准号:
NE/Y001176/1 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 55.38万 - 项目类别:
Fellowship