Modelling within-individual variation in repeated continuous exposures

对重复连续暴露中的个体差异进行建模

基本信息

  • 批准号:
    MR/N027485/1
  • 负责人:
  • 金额:
    $ 38.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Measurements of biological and emotional states are often made repeatedly for the same person. These are used to monitor people with different health problems, or to alert people to health risks. Examples include the measurement of prostate specific antigen (PSA) every 3 months in monitoring of low-risk prostate cancer, and measurement of blood pressure at antenatal appointments to identify risk of pre-eclampsia in pregnant women. Measures are collected at varying intervals, but typically in months (PSA) or weeks (blood pressure during pregnancy) rather than days. Intensively-collected measures are made increasingly possible by new technology, including 'apps' on smartphones such as those which ask about mood at intervals throughout the day. Other examples include blood glucose monitoring in pregnant mothers for detecting and reducing the risk of delivery of a high-birthweight baby, and 24-hour blood pressure monitoring in routine clinical practice.With these repeated measurements, doctors are often interested in the level of the measure (e.g. does a pregnant woman have high blood pressure), or in how fast the measure is rising (e.g. a rising PSA might indicate a worsening of prostate cancer). However, there is growing interest in whether the variability, or fluctuation, of an individual's measures might also be related to health. For example, how much a person's mood goes up and down, and the timing of these fluctuations, may tell us more about their mental health than just whether they tend to have high or low mood on average. Similarly, someone with blood pressure which varies a lot may be at higher risk of future heart attack or stroke than someone with more stable blood pressure. There are many separate features of the way a measure varies for an individual which may predict future disease. One could be called the 'amplitude', and is a measure of how many very high and very low values a person experiences (for example, the difference between the very highest and very lowest blood pressures a person experiences during one day). Another is 'variation', and is a measure of how much the person's measure changes for their overall average. Disentangling these features of variation may be important in some situations. For example, it could be that it is the variation in blood pressure which predicts future heart attacks, but the amplitude of blood pressure during pregnancy which predicts problems for mother and child. There have been many statistical methods developed to relate the level or change in a person's measures to a future disease, but far fewer to look at variation in a person's measurements. In this project, we aim to develop these much-needed statistical methods for modelling fluctuation in measures within an individual, and relating that fluctuation to risk factors and later disease. The developments we will make in this project will allow clinicians to make the best possible use of measures taken repeatedly within people in predicting their future health. We will make sure our new methods are freely available to all scientists in a user-friendly format.We will apply these methods to two studies that have previously been published. The first is blood pressure readings during pregnancy from mothers whose children were part of ALSPAC, and relating these to the health of the child at birth. The second is a study that monitored blood pressure at 15-minute intervals over one day, and relating variation in this to later cardiovascular health.
对同一个人的生物和情绪状态的测量经常被重复进行。这些用于监测患有不同健康问题的人,或提醒人们注意健康风险。例如,每3个月测量一次前列腺特异性抗原(PSA),以监测低风险前列腺癌,并在产前预约时测量血压,以确定孕妇患先兆子痫的风险。测量数据的收集间隔不同,但通常以月(PSA)或周(怀孕期间的血压)为单位,而不是以天为单位。新技术使密集收集的测量变得越来越可能,包括智能手机上的“应用程序”,例如那些在一天中每隔一段时间询问情绪的应用程序。其他例子包括孕妇的血糖监测,以检测和降低高出生体重婴儿的风险,以及常规临床实践中的24小时血压监测。通过这些重复测量,医生通常对测量水平感兴趣(例如孕妇是否有高血压),或测量上升的速度(例如PSA上升可能表明前列腺癌恶化)。然而,人们越来越感兴趣的是,一个人的措施的可变性或波动是否也可能与健康有关。例如,一个人的情绪起伏多少,以及这些波动的时间,可能会告诉我们更多关于他们的心理健康,而不仅仅是他们平均情绪是高还是低。同样,血压变化很大的人未来心脏病发作或中风的风险可能高于血压稳定的人。有许多不同的特征可以预测未来的疾病。一个可以被称为“振幅”,是衡量一个人经历了多少非常高和非常低的值(例如,一个人在一天内经历的最高和最低血压之间的差异)。另一个是“变异”,是衡量一个人的测量值相对于他们的总体平均值变化的程度。在某些情况下,解开这些变异特征可能很重要。例如,可能是血压的变化预测未来的心脏病发作,但怀孕期间血压的幅度预测母亲和孩子的问题。已经开发了许多统计方法来将一个人的测量值的水平或变化与未来的疾病联系起来,但很少有人来研究一个人的测量值的变化。在这个项目中,我们的目标是开发这些急需的统计方法,用于模拟个体内测量值的波动,并将这种波动与风险因素和后期疾病联系起来。我们将在这个项目中取得的进展将使临床医生能够最好地利用人们在预测他们未来健康时反复采取的措施。我们将确保我们的新方法以用户友好的格式免费提供给所有科学家。我们将把这些方法应用于以前发表的两项研究。第一个是母亲怀孕期间的血压读数,其子女是ALSPAC的一部分,并将这些读数与出生时的儿童健康联系起来。第二项研究是在一天内以15分钟的间隔监测血压,并将其变化与后来的心血管健康联系起来。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint modelling of individual trajectories, within-individual variability and a later outcome: systolic blood pressure through childhood and left ventricular mass in early adulthood
个体轨迹、个体内变异性和后期结果的联合建模:儿童时期的收缩压和成年早期的左心室质量
  • DOI:
    10.1101/19008474
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parker R
  • 通讯作者:
    Parker R
The dynamic interplay between sleep and mood: an intensive longitudinal study of individuals with bipolar disorder.
  • DOI:
    10.1017/s0033291721005377
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Lewis, K. J. S.;Tilling, K.;Gordon-Smith, K.;Saunders, K. E. A.;Di Florio, A.;Jones, L.;Jones, I;O'Donovan, M. C.;Heron, J.
  • 通讯作者:
    Heron, J.
Mixed-effects location scale models for joint modelling school value-added effects on the mean and variance of student achievement
用于联合建模学校增值对学生成绩均值和方差的混合效应位置尺度模型
  • DOI:
    10.48550/arxiv.2110.02079
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leckie G
  • 通讯作者:
    Leckie G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Tilling其他文献

USING REPEATED MEASURES TO IMPROVE THE PRECISION AND POWER OF GENOME-WIDE ASSOCIATION STUDIES (GWAS)
使用重复测量来提高全基因组关联研究(GWAS)的精度和功效
  • DOI:
    10.1016/j.euroneuro.2024.08.090
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Alex Kwong;Mark Adams;Poppy Grimes;Gareth Griffith;Tim Morris;Kate Tilling;Andrew McIntosh
  • 通讯作者:
    Andrew McIntosh
COMBINING MENDELIAN RANDOMISATION WITH DEPRESSION TRAJECTORIES TO IDENTIFY DEVELOPMENTALLY SPECIFIC PREDICTORS OF CHANGE IN DEPRESSIVE SYMPTOMS
将孟德尔随机化与抑郁轨迹相结合,以确定抑郁症状变化的发展特异性预测因子
  • DOI:
    10.1016/j.euroneuro.2024.08.092
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Robyn Wootton;Richard Parker;Michael Lawton;Kate Tilling
  • 通讯作者:
    Kate Tilling
Quantitative bias analysis for mismeasured variables in health research: a review of software tools
  • DOI:
    10.1186/s12874-025-02635-w
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Codiexa0J.xa0C. Wood;Kate Tilling;Jonathanxa0W. Bartlett;Rachaelxa0A. Hughes
  • 通讯作者:
    Rachaelxa0A. Hughes
Estimation of the incidence of stroke using a capture-recapture model including covariates.
使用包含协变量的捕获-再捕获模型估计中风的发病率。
W90. USING ALLELE SCORES TO IDENTIFY CONFOUNDING BY REVERSE CAUSATION IN EPIDEMIOLOGICAL STUDIES OF ALCOHOL CONSUMPTION
  • DOI:
    10.1016/j.euroneuro.2021.08.173
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hannah Sallis;Tom Palmer;Kate Tilling;George Davey Smith;Marcus Munafo
  • 通讯作者:
    Marcus Munafo

Kate Tilling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Tilling', 18)}}的其他基金

Statistical Methods for Causal Inference
因果推断的统计方法
  • 批准号:
    MC_UU_00032/2
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Intramural
Development of miDOC: an expert system and methodology for multiple imputation
miDOC 的开发:多重插补的专家系统和方法
  • 批准号:
    MR/V020641/1
  • 财政年份:
    2021
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Research Grant
Statistical Methods for Improving Causal Analyses
改进因果分析的统计方法
  • 批准号:
    MC_UU_00011/3
  • 财政年份:
    2018
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Intramural
Development of a multilevel and mixture-model framework for modelling epigenetic changes over time (resubmission)
开发多层次混合模型框架,用于模拟表观遗传随时间的变化(重新提交)
  • 批准号:
    MR/M025020/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Research Grant
Methods for modelling repeated measures in a lifecourse framework
在生命历程框架中对重复测量进行建模的方法
  • 批准号:
    G1000726/1
  • 财政年份:
    2011
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Research Grant
Developing and disseminating robust methods for handling missing data in epidemiological studies
开发和传播处理流行病学研究中缺失数据的稳健方法
  • 批准号:
    G0900724/1
  • 财政年份:
    2009
  • 资助金额:
    $ 38.47万
  • 项目类别:
    Research Grant

相似国自然基金

Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
  • 批准号:
    82371454
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目

相似海外基金

Gut microbiome-mediated differences within the pre-malignant mammary tissue environment enhance early breast tumor metastasis
恶变前乳腺组织环境中肠道微生物介导的差异增强了早期乳腺肿瘤转移
  • 批准号:
    10594667
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Functionalizing a T1D/T2D-associated locus within an intron of GLIS3.
功能化 GLIS3 内含子内的 T1D/T2D 相关位点。
  • 批准号:
    10750082
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Examining vertical alignment in perceived implementation climate within a trial of motivational interviewing in substance use disorder treatment clinics
在物质使用障碍治疗诊所的动机访谈试验中检查感知实施氛围的垂直一致性
  • 批准号:
    10680338
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Encoding social arousal within prepronociceptin circuits in the extended amygdala
在扩展杏仁核的前诺西肽环路中编码社会唤起
  • 批准号:
    10736663
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Natural model for evaluating within- and cross-species virus transmission
评估物种内和跨物种病毒传播的自然模型
  • 批准号:
    10735974
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Simple and Accessible Microfluidic Platform for Single Molecule Sequence Profiling of Tumor-derived DNA within Liquid Biopsies
简单易用的微流体平台,用于液体活检中肿瘤来源 DNA 的单分子序列分析
  • 批准号:
    10699214
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Gene Expression Profiling of Stress Resilient Mice within the Nucleus Accumbens
伏核内应激恢复小鼠的基因表达谱
  • 批准号:
    10676411
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Shedding light on balance: Interrogating individual synapses within vestibular epithelia
阐明平衡:询问前庭上皮内的单个突触
  • 批准号:
    10593864
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
Generalized fluctuation test for deciphering phenotypic switching within cell populations
破译细胞群内表型转换的广义波动测试
  • 批准号:
    10552300
  • 财政年份:
    2023
  • 资助金额:
    $ 38.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了