Statistical Methods for Causal Inference

因果推断的统计方法

基本信息

  • 批准号:
    MC_UU_00032/2
  • 负责人:
  • 金额:
    $ 198.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Intramural
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Working out which treatments or interventions are effective, using only observational data, needs increasingly sophisticated statistical methods. We aim to develop methods to enable researchers to estimate the effects of interventions as accurately as possible.We will develop models to help identify those who would benefit most from a given intervention, so enabling better targeting of treatments. Most measures in observational data are made with some error (e.g. blood pressure varies throughout the day) and we will extend current methods to reduce the effect this has on causal estimates. We will also develop ways to use current methods based on mendelian randomization (MR) to improve analyses of non-genetic exposures, such as examining the benefits of cycling to work. Current methods tend to focus on one intervention, and we will extend these to examine the long-term effects, for example to assess the impact of remaining heavier than average throughout adolescence and adulthood vs losing weight during adulthood. Finally, we will improve methods for combining evidence from several different study types to answer the same question, by developing a triangulation framework.
仅使用观察数据来确定哪些治疗或干预措施有效,需要日益复杂的统计方法。我们的目标是开发方法,使研究人员能够尽可能准确地估计干预措施的效果。我们将开发模型来帮助确定哪些人将从特定干预措施中受益最大,从而更好地制定治疗目标。观察数据中的大多数测量都存在一些误差(例如血压全天变化),我们将扩展当前的方法以减少这对因果估计的影响。我们还将开发使用基于孟德尔随机化 (MR) 的现有方法来改进对非遗传暴露的分析,例如检查骑自行车上班的好处。目前的方法往往侧重于一种干预措施,我们将扩展这些干预措施以检查长期影响,例如评估在整个青春期和成年期保持体重高于平均水平与在成年期减肥的影响。最后,我们将通过开发三角测量框架来改进结合多种不同研究类型的证据来回答同一问题的方法。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two sample Mendelian Randomisation using an outcome from a multilevel model of disease progression
  • DOI:
    10.1007/s10654-023-01093-2
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    M. Lawton;Y. Ben-Shlomo;A. Gkatzionis;Michele T M Hu;D. Grosset;K. Tilling
  • 通讯作者:
    M. Lawton;Y. Ben-Shlomo;A. Gkatzionis;Michele T M Hu;D. Grosset;K. Tilling
Investigation of genetic determinants of cognitive change in later life.
  • DOI:
    10.1038/s41398-023-02726-6
  • 发表时间:
    2024-01-18
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Mahedy, Liam;Anderson, Emma L.;Tilling, Kate;Thornton, Zak A.;Elmore, Andrew R.;Szalma, Sandor;Simen, Arthur;Culp, Meredith;Zicha, Stephen;Harel, Brian T.;Davey Smith, George;Smith, Erin N.;Paternoster, Lavinia
  • 通讯作者:
    Paternoster, Lavinia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Tilling其他文献

USING REPEATED MEASURES TO IMPROVE THE PRECISION AND POWER OF GENOME-WIDE ASSOCIATION STUDIES (GWAS)
使用重复测量来提高全基因组关联研究(GWAS)的精度和功效
  • DOI:
    10.1016/j.euroneuro.2024.08.090
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Alex Kwong;Mark Adams;Poppy Grimes;Gareth Griffith;Tim Morris;Kate Tilling;Andrew McIntosh
  • 通讯作者:
    Andrew McIntosh
COMBINING MENDELIAN RANDOMISATION WITH DEPRESSION TRAJECTORIES TO IDENTIFY DEVELOPMENTALLY SPECIFIC PREDICTORS OF CHANGE IN DEPRESSIVE SYMPTOMS
将孟德尔随机化与抑郁轨迹相结合,以确定抑郁症状变化的发展特异性预测因子
  • DOI:
    10.1016/j.euroneuro.2024.08.092
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Robyn Wootton;Richard Parker;Michael Lawton;Kate Tilling
  • 通讯作者:
    Kate Tilling
Quantitative bias analysis for mismeasured variables in health research: a review of software tools
  • DOI:
    10.1186/s12874-025-02635-w
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Codiexa0J.xa0C. Wood;Kate Tilling;Jonathanxa0W. Bartlett;Rachaelxa0A. Hughes
  • 通讯作者:
    Rachaelxa0A. Hughes
Estimation of the incidence of stroke using a capture-recapture model including covariates.
使用包含协变量的捕获-再捕获模型估计中风的发病率。
W90. USING ALLELE SCORES TO IDENTIFY CONFOUNDING BY REVERSE CAUSATION IN EPIDEMIOLOGICAL STUDIES OF ALCOHOL CONSUMPTION
  • DOI:
    10.1016/j.euroneuro.2021.08.173
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hannah Sallis;Tom Palmer;Kate Tilling;George Davey Smith;Marcus Munafo
  • 通讯作者:
    Marcus Munafo

Kate Tilling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Tilling', 18)}}的其他基金

Development of miDOC: an expert system and methodology for multiple imputation
miDOC 的开发:多重插补的专家系统和方法
  • 批准号:
    MR/V020641/1
  • 财政年份:
    2021
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant
Statistical Methods for Improving Causal Analyses
改进因果分析的统计方法
  • 批准号:
    MC_UU_00011/3
  • 财政年份:
    2018
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Intramural
Modelling within-individual variation in repeated continuous exposures
对重复连续暴露中的个体差异进行建模
  • 批准号:
    MR/N027485/1
  • 财政年份:
    2017
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant
Development of a multilevel and mixture-model framework for modelling epigenetic changes over time (resubmission)
开发多层次混合模型框架,用于模拟表观遗传随时间的变化(重新提交)
  • 批准号:
    MR/M025020/1
  • 财政年份:
    2016
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant
Methods for modelling repeated measures in a lifecourse framework
在生命历程框架中对重复测量进行建模的方法
  • 批准号:
    G1000726/1
  • 财政年份:
    2011
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant
Developing and disseminating robust methods for handling missing data in epidemiological studies
开发和传播处理流行病学研究中缺失数据的稳健方法
  • 批准号:
    G0900724/1
  • 财政年份:
    2009
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
  • 批准号:
    10660281
  • 财政年份:
    2023
  • 资助金额:
    $ 198.01万
  • 项目类别:
Novel statistical methods for transcriptomic imputation to enhance understanding of causal mechanisms underlying human diseases
转录组插补的新统计方法可增强对人类疾病因果机制的理解
  • 批准号:
    MR/V020749/1
  • 财政年份:
    2022
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grant
Improvement of ecological risk assessment methods for chemical substances by statistical causal inference
通过统计因果推断改进化学物质生态风险评估方法
  • 批准号:
    21J01394
  • 财政年份:
    2021
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical Methods for Improving Causal Analyses
改进因果分析的统计方法
  • 批准号:
    MC_UU_00011/3
  • 财政年份:
    2018
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Intramural
EAPSI: Developing Statistical Methods for Removing Unwanted Variation with Negative Controls in Genetics and Causal Inference
EAPSI:开发统计方法,通过遗传学和因果推理中的负控制消除不需要的变异
  • 批准号:
    1713563
  • 财政年份:
    2017
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Fellowship Award
Statistical Methods for Causal Inference in Geographic Regression Discontinuity Designs
地理回归不连续性设计中因果推断的统计方法
  • 批准号:
    1461435
  • 财政年份:
    2015
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Standard Grant
Statistical Methods for Causal Inference in Observational Studies
观察研究中因果推断的统计方法
  • 批准号:
    8870561
  • 财政年份:
    2015
  • 资助金额:
    $ 198.01万
  • 项目类别:
Structural identification of trait associated chromosomal segments and of causal mutations for quantitative traits in pooled F2 crosses using next-generation sequencing technologies and innovative statistical methods
使用新一代测序技术和创新统计方法对 F2 杂交中的性状相关染色体片段和数量性状的因果突变进行结构鉴定
  • 批准号:
    261898836
  • 财政年份:
    2014
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Research Grants
Development of Statistical Methods Based on the Causal Inferencein the Molecular Epidemiologic Studies
分子流行病学研究中基于因果推断的统计方法的发展
  • 批准号:
    19500240
  • 财政年份:
    2007
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utilisation of complex epidemiological studies & advanced statistical methods, to explore causal pathways to illness...
利用复杂的流行病学研究
  • 批准号:
    nhmrc : 283326
  • 财政年份:
    2004
  • 资助金额:
    $ 198.01万
  • 项目类别:
    Early Career Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了