RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING

生物统计方法和数学建模研究

基本信息

项目摘要

Different statistical methods that adjust the effect of macronutrient intak for total energy intake are currently being used to analyze epidemiologic studies of diet and disease. This research project is examining the statistical properties of these methods. During the past year this work resulted in 1) a paper published on the ability of currently-used energy adjustment regression methods to disentangle the effects of total energy from its component macronutrient-specific parts, and 2) a paper conditionally accepted for publication that investigates the effect of dietary measurement error on the results of applying energy adjusted methods for a typical case of measurement errors that are heteroscedastic, non-normal, and correlate with nutrient intakes and with each other. Two projects were undertaken to improve standard confidence limits for estimating age-specific and age-adjusted cancer incidence and mortality rates. The first project investigated methods of generalizing standard Poisson variance methods to allow extra-Poisson variation in the calculation of confidence limits. We investigated a nonparametric nearest-neighbor estimate of the variance which does not need to rely on any assumed regression model and found it to give an approximately unbiased estimate of the overdispersion parameter for a wide class of true regression models. Once the overdispersion is nonparametrically estimated, the resulting variance estimate provides a more robust confidence interval estimate of the cancer rates. The second project investigated confidence intervals for age-adjusted rates under the Poisson assumption. We found that the normal approximations as well as a recently proposed approximation do not perform well when the number of counts is small and the adjustment weights vary substantially across the different ages. We propose an approximation which gives exact intervals whenever the age-adjusted rate reduces to a weighted Poisson random variable. For other cases we compare our approximation to other methods by simulations and show that it has better coverage properties. In collaboration with Dr. Chris Gennings of the Medical College of Virginia this project has developed a nonparametric permutation test of estimated distribution functions for comparing two groups of individuals, each having a set of repeated measurements on an ordinal scale. This methodology is broad enough to be applied to right censored and interval censored survival data. For right censored data, this ridit permutation approach leads to a known rank test. New statistical methods for detection and inference of disease clusters are being developed. Previously proposed methods have been tests for overall clustering and do not have the ability to identify the location of clusters. The properties of a spatial scan statistic which takes into account the nonhomogeneous population densities as well as confounding variables have been evaluated. The statistic both tests for the location o clusters and tests for their statistical significance, and thus can be used both to evaluate cluster alarms and for routine surveillance. The spatial scan statistic has also been extended to study space-time clusters in addition to purely spatial ones.
不同的统计方法调整宏量营养素摄入的效果

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C C BROWN其他文献

C C BROWN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C C BROWN', 18)}}的其他基金

EXTRICATION US GOVT. PROPERTY & SPECIMENS, ZAIRE
拯救美国政府。
  • 批准号:
    2357594
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3916712
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3874572
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3752537
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
CONSULTATION IN BIOSTATISTICAL METHODOLOGY AND CANCER CONTROL
生物统计方法学和癌症控制咨询
  • 批准号:
    6161610
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3853359
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3774715
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
CONSULTATION IN BIOSTATISTICAL METHODOLOGY AND CANCER CONTROL
生物统计方法学和癌症控制咨询
  • 批准号:
    2571514
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    6161594
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
RESEARCH IN BIOSTATISTICAL METHODOLOGY AND MATHEMATICAL MODELING
生物统计方法和数学建模研究
  • 批准号:
    3963368
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Towards more complete models and improved computer simulation tools for Liquid Composite Molding (LCM)
为液体复合成型 (LCM) 打造更完整的模型和改进的计算机模拟工具
  • 批准号:
    RGPIN-2022-04495
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Computer simulation of yeast metabolism by data-driven ensemble modeling
通过数据驱动的集成建模对酵母代谢进行计算机模拟
  • 批准号:
    22H01879
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computer simulation studies of crystallization in structured ternary fluids
结构三元流体结晶的计算机模拟研究
  • 批准号:
    2717178
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Computer simulation of confined polymers and 2D catenated-ring networks
受限聚合物和二维链环网络的计算机模拟
  • 批准号:
    RGPIN-2022-03086
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
  • 批准号:
    22K03579
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aggregation process of amyloid-beta peptides on a membrane on a lipid membrane studied by computer simulation
计算机模拟研究淀粉样β肽在脂膜上的聚集过程
  • 批准号:
    21K06040
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving cardiac valve implant outcomes with advanced computer simulation
通过先进的计算机模拟改善心脏瓣膜植入效果
  • 批准号:
    nhmrc : 2002892
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Ideas Grants
Computer simulation of cell polarization and migration in 3D
3D 细胞极化和迁移的计算机模拟
  • 批准号:
    563522-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Computer Simulation of a Semiflexible Polymer Confined to a Dual-Nanocavity Geometry
限制在双纳米腔几何结构中的半柔性聚合物的计算机模拟
  • 批准号:
    563544-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
  • 批准号:
    10550022
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了