The Role and Regulation of Tiam1-Rac Signalling in Bipolar Spindle Assembly

Tiam1-Rac 信号在双极纺锤体组装中的作用和调节

基本信息

  • 批准号:
    MR/J00104X/1
  • 负责人:
  • 金额:
    $ 36.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

During cell division our two identical sets of chromosomes need to be divided accurately into two daughter cells. This process relies on the mitotic bipolar spindle, a structure composed of microtubules (dynamic cytoskeletal structures) which capture the chromosomes. Formation of the spindle involves two centrosomes, the organising centres for microtubule nucleation. The way the centrosomes move apart to form the spindle when cells enter mitosis is very highly regulated. Scientists have previously shown that one protein in particular, Eg5, is very important for this separation. Drugs which target this protein completely stop the centrosomes separating and cause cells to arrest in mitosis with 'monopolar' spindles. We have recently found that a protein (Tiam1) and its substrate (Rac), which were previously known to be important in regulating the migration of cancer cells, are also important for regulating this centrosome separation process in mitosis. Tiam1 and Rac produce a force which counteracts the force of Eg5 during spindle formation. We have shown that this balance of forces is necessary to allow the chromosomes to become efficiently captured by the microtubules. We have also found that Tiam1 interacts with the MPF, an important mitotic complex (which also regulates the function of Eg5), and that regulation of Tiam1 by MPF is important for the function of Tiam1 in regulating centrosome separation. However, we currently do not know the processes downstream of Tiam1 and Rac in this process, and it is likely that a number of other, unknown proteins are involved. Understanding the molecular mechanisms involved in the process of cell division is extremely important for cancer research. Firstly, it is known that de-regulation of accurate division can cause cancer by the loss or gain of important genes. Secondly, many current treatments target the process of cell division because cancer cells divide more rapidly than normal cells, so knowing which proteins regulate this process allow us to predict how cancers will respond to certain chemotherapies. The force produced by Tiam1 and Rac means that when one of these proteins is absent, or inhibited, cells can more readily 'escape' inhibition of Eg5. Currently, Eg5 inhibitors are in clinical trials for cancer treatment, so looking more closely at the mechanisms of this signalling pathway is important for being able to predict how cancers will respond to this new class of cancer therapeutics. The way that we think Tiam1 and Rac exert their effect on centrosome separation, namely by regulating microtubules, also means they can alter cells' responses to another class of cancer therapeutics, that target the microtubules to kill cancer cells. We plan to investigate this further, by repeating our experiments in cancer cells to see whether Tiam1 and Rac could be a biomarker for treatment with these drugs.Because of the potential importance of this signalling pathway for tumourigenesis and cancer therapy, we aim to further characterise the signalling pathway, and our previous work means that we already have a number of tools available to achieve this. Part of this project involves looking more closely at the regulation of microtubules by Tiam1 and Rac. Another important aspect of this work is to identify the proteins which work together with Tiam1 and Rac to regulate centrosome separation. We can take two different approaches to this; firstly, we can use the tools we have to initiate a screen for new potential interacting proteins, and secondly we can use a candidate approach to individually test candidates from our previous experiments, or the literature, which seem likely to be involved. This work will not only further our understanding of the important process of centrosome regulation in mitosis, but, as described above, may have important implications for tumourigenesis and current cancer therapies.
在细胞分裂过程中,我们的两组相同的染色体需要准确地分成两个子细胞。这个过程依赖于有丝分裂双极纺锤体,一种由微管(动态细胞骨架结构)组成的结构,它捕获染色体。纺锤体的形成涉及两个中心体,微管成核的组织中心。当细胞进入有丝分裂时,中心体分开形成纺锤体的方式受到高度调控。科学家们之前已经证明,一种特别的蛋白质Eg 5对这种分离非常重要。靶向这种蛋白质的药物完全阻止中心体分离,并导致细胞在有丝分裂中停止“单极”纺锤体。我们最近发现,以前已知在调节癌细胞迁移中重要的蛋白质(Tiam 1)及其底物(Rac)对于调节有丝分裂中的中心体分离过程也很重要。Tiam 1和Rac在纺锤体形成期间产生抵消Eg 5的力的力。我们已经证明,这种力的平衡是必要的,使染色体成为有效地捕获的微管。我们还发现Tiam 1与MPF相互作用,MPF是一种重要的有丝分裂复合物(也调节Eg 5的功能),MPF对Tiam 1的调节对于Tiam 1调节中心体分离的功能很重要。然而,我们目前还不知道Tiam 1和Rac在这个过程中的下游过程,很可能涉及许多其他未知的蛋白质。了解细胞分裂过程中的分子机制对癌症研究至关重要。首先,已知精确分裂的失调可通过重要基因的丢失或获得而导致癌症。其次,目前的许多治疗方法都针对细胞分裂过程,因为癌细胞比正常细胞分裂得更快,因此了解哪些蛋白质调节这一过程使我们能够预测癌症对某些化疗的反应。Tiam 1和Rac产生的力意味着,当这些蛋白质之一缺失或受到抑制时,细胞可以更容易地“逃脱”Eg 5的抑制。目前,Eg 5抑制剂正在进行癌症治疗的临床试验,因此更密切地观察这种信号通路的机制对于预测癌症如何对这种新的癌症治疗方法做出反应非常重要。我们认为Tiam 1和Rac对中心体分离发挥作用的方式,即通过调节微管,也意味着它们可以改变细胞对另一类癌症疗法的反应,这些疗法靶向微管以杀死癌细胞。我们计划通过重复我们在癌细胞中的实验来进一步研究这一点,看看Tiam 1和Rac是否可以成为这些药物治疗的生物标志物。由于这种信号通路对肿瘤发生和癌症治疗的潜在重要性,我们的目标是进一步研究这种信号通路,我们以前的工作意味着我们已经有了一些工具可以实现这一目标。该项目的一部分涉及更密切地关注Tiam 1和Rac对微管的调节。这项工作的另一个重要方面是确定与Tiam 1和Rac一起调节中心体分离的蛋白质。我们可以采取两种不同的方法;首先,我们可以使用我们所拥有的工具来启动新的潜在相互作用蛋白的筛选,其次,我们可以使用候选方法来单独测试我们以前的实验或文献中的候选蛋白,这些候选蛋白似乎可能涉及。这项工作不仅将进一步加深我们对有丝分裂中中心体调控的重要过程的理解,而且如上所述,可能对肿瘤发生和当前癌症治疗具有重要意义。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation.
  • DOI:
    10.1038/ncomms8437
  • 发表时间:
    2015-06-16
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Whalley, Helen J.;Porter, Andrew P.;Diamantopoulou, Zoi;White, Gavin R. M.;Castaneda-Saucedo, Eduardo;Malliri, Angeliki
  • 通讯作者:
    Malliri, Angeliki
Centrosome separation; a careful balancing act.
中心体分离;
  • DOI:
    10.1080/15384101.2015.1080981
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Whalley HJ
  • 通讯作者:
    Whalley HJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angeliki Malliri其他文献

A stretchable and biomimetic polyurethane membrane for lung alveolar in vitro modelling
  • DOI:
    10.1038/s41598-025-98500-3
  • 发表时间:
    2025-04-25
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Emmanouela Mitta;Andrew Gilmore;Angeliki Malliri;Sarah Harriet Cartmell
  • 通讯作者:
    Sarah Harriet Cartmell

Angeliki Malliri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angeliki Malliri', 18)}}的其他基金

Regulation of the Rac activator Tiam1 by ubiquitylation
通过泛素化调节 Rac 激活剂 Tiam1
  • 批准号:
    MR/L007495/1
  • 财政年份:
    2014
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Research Grant

相似海外基金

BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
  • 批准号:
    10110711
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    EU-Funded
p53PRISM: Regulation of life-and-death decisions by conformational switches
p53PRISM:构象开关调节生死决定
  • 批准号:
    EP/Z000823/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Fellowship
Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
  • 批准号:
    2418618
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: 2024 Post-Transcriptional Gene Regulation Gordon Research Conference and Seminar: The Versatility of RNA in the Living World
会议:2024年转录后基因调控戈登研究会议及研讨会:RNA在生活世界中的多功能性
  • 批准号:
    2422760
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
NSF PRFB FY23: Cross-species gene regulation of a plant-fungal symbiosis under environmental stress
NSF PRFB FY23:环境胁迫下植物-真菌共生的跨物种基因调控
  • 批准号:
    2305481
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Fellowship Award
CAREER: Uncovering the role of splicing factors in transcriptional regulation
职业:揭示剪接因子在转录调控中的作用
  • 批准号:
    2339464
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
  • 批准号:
    2339849
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
Role of chromatin remodeling in gene regulation during maize basal endosperm development
染色质重塑在玉米基础胚乳发育过程中基因调控中的作用
  • 批准号:
    2341575
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
BRC-BIO: Epigenetic Regulation of Transposable Elements in Maize
BRC-BIO:玉米转座元件的表观遗传调控
  • 批准号:
    2334573
  • 财政年份:
    2024
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了