The Regression Discontinuity Design: a novel approach to evaluating the effect of drugs and treatments in primary care

断点回归设计:一种评估初级保健中药物和治疗效果的新方法

基本信息

  • 批准号:
    MR/K014838/1
  • 负责人:
  • 金额:
    $ 40.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

A fundamental task in clinical practice is to determine whether a particular drug is being prescribed in the most effective way, in order to increase the clinical benefit derived from its use. While Randomised Clinical Trials (RCTs) are correctly considered to be the best scientific method for evaluation of drug efficacy, these studies often have poor external validity, because of patient selection, in particular the avoidance of comorbidities. Prescription guidelines are not always evidence based and it typically falls to clinical experts to set them. The regression discontinuity design (RDD) is an econometric quasi-experimental design aimed at estimating the causal effects of a treatment by exploiting naturally occurring treatment rules. It was first introduced in the educational economics literature in the 1960s but it has not been widely used outside of this field until recently. The RDD exploits the fact that many treatments are assigned according to pre-decided rules, eg those set by NICE in the UK. The idea behind the RDD is that if we can assume that individuals just on either side of a pre-selected threshold (eg blood pressure of 140/90mmHg) belong to a common population with respect to the characteristics that inform the assignment rule and determine the outcome, then the threshold can be seen as a random intervention which assigns the treatment to those that fall just above and no treatment to those that fall just below it. Due to the quasi-randomised nature of the RDD, confounding is eliminated or at least mitigated. We can thus use the RDD to estimate the effect of the treatment or a related exposure within the population around the threshold. However, although the RDD mimics randomisation, in our particular case, in order to reduce bias of the estimates it will still be necessary to further account in the analyses for other factors which may impact the decision to prescribe, including markers of patients frailty or comorbidities. In situations where the set up is fully adhered to (ie when all individuals above (below) the threshold are (not) given the treatment, the RDD is termed "sharp". Conversely, in cases where well-defined guidelines exist, but for some (possibly completely legit, under a clinical perspective) reason they are not fully followed, the RDD is termed "fuzzy". RDD estimators have strong connections with other causal inference estimators in statistical research. However, in our case, we are faced with the complication that often in epidemiology and clinical research the outcome of interest is represented by a binary variable (eg the occurrence of a clinical event, or mortality). Specific methods for such a case have not been extensively developed, although Instrumental Variable (IV) theory can be brought to bear. Specifically, the main difficulty lies in the fact that in this case the interest is in causal ratios, rather than causal differences (which are relevant in the case of continuous outcomes). Methods that can be used to derive such estimators are based on making additional assumptions in addition to the standard IV setting. Assumption A1) involves approximate linearity between a function of the outcome and the treatment and unobserved confounders; and A2) assumes no interaction between the treatment and the unobserved confounders (termed "no-effect modification on the multiplicative scale"). These cannot be directly tested (because they involve unobservable variables), but we will investigate their plausibility using simulations. Electronic healthcare records such as "The Health Improvement Network" (THIN) primary care database provide an excellent opportunity to investigate questions like those mentioned above. From THIN we can obtain detailed information on prescriptions made in primary care and measurements both before and after initiation of prescription, as well as adverse events.
临床实践中的一项基本任务是确定特定药物是否以最有效的方式处方,以增加从其使用中获得的临床益处。虽然随机临床试验(RCT)被正确地认为是评价药物疗效的最佳科学方法,但由于患者选择,特别是避免合并症,这些研究通常具有较差的外部效度。处方指南并不总是以证据为基础的,通常是由临床专家福尔斯来制定的。回归不连续设计(RDD)是一种计量经济学准实验设计,旨在通过利用自然发生的处理规则来估计处理的因果效应。它最早出现在20世纪60年代的教育经济学文献中,但直到最近才在该领域之外得到广泛应用。RDD利用了这样一个事实,即许多治疗是根据预先决定的规则分配的,例如英国NICE制定的规则。RDD背后的想法是,如果我们可以假设个人只是在预先选择的阈值的任何一侧,(例如血压140/90 mmHg)属于一个共同的人群,其特征是分配规则和决定结果,那么阈值可以被看作是一种随机干预,它将治疗分配给那些刚好落在上面的人,而不治疗那些落在上面的人。由于RDD的准随机性质,消除或至少减轻了混杂。因此,我们可以使用RDD来估计治疗的效果或阈值附近人群中的相关暴露。然而,尽管RDD模拟了随机化,但在我们的特定病例中,为了减少估计值的偏倚,仍有必要在分析中进一步考虑可能影响处方决定的其他因素,包括患者虚弱或合并症的标志物。在完全遵守该设置的情况下(即当所有高于(低于)阈值的个体都(不)接受治疗时),RDD被称为“尖锐”。相反,如果存在明确定义的指南,但由于某些(从临床角度来看,可能完全合法)原因没有完全遵循,则RDD被称为“模糊”。RDD估计与统计研究中的其他因果推断估计有着密切的联系。然而,在我们的病例中,我们面临着流行病学和临床研究中经常出现的并发症,感兴趣的结果由二元变量表示(例如临床事件的发生或死亡率)。针对这种情况的具体方法尚未得到广泛的发展,尽管工具变量(IV)理论可以发挥作用。具体来说,主要的困难在于,在这种情况下,人们感兴趣的是因果比率,而不是因果差异(这与连续结果的情况有关)。可用于导出此类估计量的方法是基于除了标准IV设置之外的其他假设。假设A1)涉及结局函数与治疗和未观察到的混杂因素之间的近似线性; A2)假设治疗和未观察到的混杂因素之间没有相互作用(称为"乘法量表上的无效应修正")。这些不能直接测试(因为它们涉及不可观察的变量),但我们将使用模拟来研究它们的可验证性。“健康改善网络”(THIN)初级保健数据库等电子医疗记录为调查上述问题提供了绝佳的机会。通过THIN,我们可以获得有关初级保健处方和处方开始前后测量以及不良事件的详细信息。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian regression discontinuity designs: Incorporating clinical knowledge in the causal analysis of primary care data
贝叶斯回归不连续性设计:将临床知识纳入初级保健数据的因果分析中
  • DOI:
    10.48550/arxiv.1403.1806
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geneletti S
  • 通讯作者:
    Geneletti S
Bayesian modelling for binary outcomes in the regression discontinuity design
Bayesian regression discontinuity designs: incorporating clinical knowledge in the causal analysis of primary care data.
  • DOI:
    10.1002/sim.6486
  • 发表时间:
    2015-07-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Geneletti S;O'Keeffe AG;Sharples LD;Richardson S;Baio G
  • 通讯作者:
    Baio G
Approaches to the Estimation of the Local Average Treatment Effect in a Regression Discontinuity Design.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gianluca Baio其他文献

Economic Evaluations of Pharmaceuticals Granted a Marketing Authorisation Without the Results of Randomised Trials: A Systematic Review and Taxonomy
  • DOI:
    10.1007/s40273-016-0460-6
  • 发表时间:
    2016-10-24
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Anthony J. Hatswell;Nick Freemantle;Gianluca Baio
  • 通讯作者:
    Gianluca Baio
Pharmacoutilization and costs of osteoarthritis: changes induced by the introduction of a cyclooxygenase-2 inhibitor into clinical practice.
骨关节炎的药物利用和成本:将环氧合酶 2 抑制剂引入临床实践引起的变化。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    P. Russo;Alessandro Capone;E. Attanasio;Gianluca Baio;M. D. Martino;L. Esposti;F. Marchetta;S. Buda;E. D. Esposti;Luciano Caprino
  • 通讯作者:
    Luciano Caprino
Handling manipulated evidence
  • DOI:
    10.1016/j.forsciint.2006.08.017
  • 发表时间:
    2007-07-04
  • 期刊:
  • 影响因子:
  • 作者:
    Gianluca Baio;Fabio Corradi
  • 通讯作者:
    Fabio Corradi
Correction to: Modeling outcomes of soccer matches
  • DOI:
    10.1007/s10994-018-5757-6
  • 发表时间:
    2018-08-14
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Alkeos Tsokos;Santhosh Narayanan;Ioannis Kosmidis;Gianluca Baio;Mihai Cucuringu;Gavin Whitaker;Franz Király
  • 通讯作者:
    Franz Király
CO170 Exploring the Relationship Between Surrogate Endpoints and Clinical Outcomes in Primary Biliary Cholangitis: A Systematic Literature Review and Meta-Analysis
CO170 探索原发性胆汁性胆管炎中替代终点与临床结局之间的关系:系统文献回顾和荟萃分析
  • DOI:
    10.1016/j.jval.2025.04.255
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Dilip Makhija;Marvin Rock;Chong H Kim;Mirko von Hein;Ryan Thaliffdeen;Oskar Eklund;Pankaj Rai;Howard Thom;Gianluca Baio;Barinder Singh
  • 通讯作者:
    Barinder Singh

Gianluca Baio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
  • 批准号:
    23H01341
  • 财政年份:
    2023
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Search for D" Discontinuity Structure
全局搜索 D" 不连续结构
  • 批准号:
    2132400
  • 财政年份:
    2022
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Standard Grant
Research on the emergence and formation of forward integration by home appliance manufactures in Japan: prewar-postwar continuity and discontinuity
日本家电制造商前向一体化的产生与形成研究:战前战后的连续性与间断性
  • 批准号:
    22K01775
  • 财政年份:
    2022
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuity and Discontinuity of Irrigation "Customs" in Early Colonial Taiwan
早期台湾殖民地灌溉“习俗”的延续与断续
  • 批准号:
    21K13114
  • 财政年份:
    2021
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
  • 批准号:
    2113364
  • 财政年份:
    2021
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Standard Grant
New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference
不连续性回归设计的新进展:协变量调整和覆盖最优推理
  • 批准号:
    21K01419
  • 财政年份:
    2021
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ManagemenT of chronIc cardioMetabolic diseasE and treatment diScontinuity in adult ADHD PAtieNts (TIMESPAN)
成人 ADHD 患者慢性心脏代谢疾病的管理和治疗中断 (TIMESPAN)
  • 批准号:
    nhmrc : 2007048
  • 财政年份:
    2021
  • 资助金额:
    $ 40.36万
  • 项目类别:
    International Collaborations
A Regression Discontinuity Study of the Impact of Mathematics Achievement Fund on Student Outcomes
数学成绩基金对学生成绩影响的断点回归研究
  • 批准号:
    2000483
  • 财政年份:
    2020
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Standard Grant
The Discontinuity Effect: The Interaction of Joint Decision-Making with Formal and Informal Sanction Mechanisms
不连续性效应:联合决策与正式和非正式制裁机制的相互作用
  • 批准号:
    2204999
  • 财政年份:
    2019
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Studentship
Free-Discontinuity Problems and Perimeter Inequalities under Symmetrisation
对称下的自由不连续问题和周长不等式
  • 批准号:
    1816538
  • 财政年份:
    2019
  • 资助金额:
    $ 40.36万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了