Prediction mechanisms of the brain: a computational taxonomy
大脑的预测机制:计算分类法
基本信息
- 批准号:MR/L019639/1
- 负责人:
- 金额:$ 122.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our brains receive a continuous torrent of unsorted, noisy data from the senses - changing patterns of light, distributions of sound frequencies, and signals from our skin and muscles about the position and movements of the body. Yet we perceive an ordered and meaningful world of objects, speech and music (not patterns of light and sound energy), in which we produce actions directed towards behavioural goals (rather than outputting jumble of limb locations and muscle tensions). To create order from chaos, the brain is continually constructing and refining models of the sensory world and the animal's or person's actions in it. These models simplify information processing by capturing the meaningful structure in the external world and ignoring information that is unstructured, meaningless or irrelevant. In this sense we can think of brains almost like scientists, actively trying to understand and predict the world around them by simplifying it down to its core elements. In my research, I am trying to answer some rather general questions about how the brain constructs internal models that accurately capture the structure of the external world. I will be targeting three information processing challenges that brains face again and again in different contexts, and trying to work out if the brain has dedicated systems for solving these problems, and if so, how those systems work: - How does the brain focus on relevant variation in stimuli (such as the rate at which cars are approaching a pedestrian crossing) and filter out irrelevant variation (such as the colour of the cars)? - How does the brain optimise processing of relevant stimuli (for example, focussing attention on stimuli where similar stimuli have very different meanings, and so careful processing is required?- How does the brain determine how much to change its expectations about the world, as the environment changes? If I experience a surprising event (such as an increase in traffic on my route to work), how much should I update my expectations for future occasions? Can I voluntarily set my brain to learn faster (for example, if I expect a change in traffic flow because I know that construction work is taking place) and to forget again (when the construction work is over)?My approach to understanding how the brain meets these challenges is to develop algorithms (implemented in computer programmes) that behave in a similar way to human brains in solving these challenges, and then to work out how these algorithms could be computed by populations of neurons in a real brain. Then to test whether the algorithms are correct (that is, whether the brain really works that way), I use my neural network models to generate new predictions about how people will behave in experiments, and how their brain activity will change in different circumstances. I measure brain activity using non-invasive imaging techniques such as MRI. Some of my models also make predictions about how different brain chemicals (neurotransmitters and neuromodulators) affect the processing of information by the brain. To test these hypotheses, I will give healthy volunteers small doses of drugs that affect neurotransmitter concentrations and observe the resulting changes in their behaviour and brain activity.
我们的大脑从感官中接收到一系列杂乱的、嘈杂的数据--光的变化模式、声音频率的分布,以及来自皮肤和肌肉的关于身体位置和运动的信号。然而,我们感知到的是一个由物体、言语和音乐(而不是光和声音能量的模式)组成的有序而有意义的世界,在这个世界中,我们产生了指向行为目标的行动(而不是输出一堆肢体位置和肌肉张力)。为了从混乱中创造秩序,大脑不断地构建和完善感官世界以及动物或人在其中的行为的模型。这些模型通过捕捉外部世界中有意义的结构而忽略非结构化的、无意义的或不相关的信息来简化信息处理。从这个意义上说,我们可以把大脑想象成科学家,通过将世界简化为核心元素,积极地试图理解和预测周围的世界。在我的研究中,我试图回答一些关于大脑如何构建内部模型以准确捕捉外部世界结构的相当普遍的问题。我将针对大脑在不同情况下一次又一次面临的三个信息处理挑战,并试图找出大脑是否有专门的系统来解决这些问题,如果有,这些系统是如何工作的:- 大脑如何专注于刺激的相关变化(例如汽车接近行人过路处的速率)并过滤掉不相关的变化(例如汽车的颜色)?- 大脑如何优化相关刺激的处理(例如,将注意力集中在类似刺激具有非常不同含义的刺激上,因此需要仔细处理?)随着环境的变化,大脑如何决定改变对世界的期望?如果我经历了一个令人惊讶的事件(比如上班路上的交通流量增加),我应该对未来的情况更新多少预期?我是否可以自愿地让我的大脑更快地学习(例如,如果我知道正在进行建筑工程,所以我预计交通流量会发生变化),并再次忘记(当建筑工程结束时)?我理解大脑如何应对这些挑战的方法是开发算法(在计算机程序中实现),这些算法在解决这些挑战时的行为方式与人类大脑相似,然后研究这些算法如何通过真实的大脑中的神经元群体进行计算。然后,为了测试算法是否正确(也就是说,大脑是否真的以这种方式工作),我使用我的神经网络模型来生成关于人们在实验中的行为以及他们的大脑活动在不同情况下如何变化的新预测。我使用非侵入性成像技术(如MRI)测量大脑活动。我的一些模型还预测了不同的大脑化学物质(神经递质和神经调质)如何影响大脑对信息的处理。为了验证这些假设,我将给健康的志愿者服用小剂量的药物来影响神经递质的浓度,并观察他们的行为和大脑活动的变化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Organizing conceptual knowledge in humans with a gridlike code.
用网格代码在人类中组织概念知识。
- DOI:10.1126/science.aaf0941
- 发表时间:2016-06-17
- 期刊:
- 影响因子:0
- 作者:Constantinescu AO;O'Reilly JX;Behrens TEJ
- 通讯作者:Behrens TEJ
A network for computing value homeostasis in the human medial prefrontal cortex
用于计算人类内侧前额叶皮层价值稳态的网络
- DOI:10.1101/278531
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Juechems K
- 通讯作者:Juechems K
Dissociable mechanisms of information sampling in prefrontal cortex and the dopaminergic system
- DOI:10.1016/j.cobeha.2021.04.005
- 发表时间:2021-10
- 期刊:
- 影响因子:5
- 作者:P. Kaanders;Keno Juechems;J. O’Reilly;L. Hunt
- 通讯作者:P. Kaanders;Keno Juechems;J. O’Reilly;L. Hunt
Anxious individuals have difficulty learning the causal statistics of aversive environments.
- DOI:10.1038/nn.3961
- 发表时间:2015-04
- 期刊:
- 影响因子:25
- 作者:Browning M;Behrens TE;Jocham G;O'Reilly JX;Bishop SJ
- 通讯作者:Bishop SJ
Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest
- DOI:10.7554/elife.04585
- 发表时间:2015-02-09
- 期刊:
- 影响因子:7.7
- 作者:Johnen, Vanessa M.;Neubert, Franz-Xaver;Rushworth, Matthew F. S.
- 通讯作者:Rushworth, Matthew F. S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jill O'Reilly其他文献
Jill O'Reilly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jill O'Reilly', 18)}}的其他基金
Inhibitory engrams in learning and memory consolidation
学习和记忆巩固中的抑制性印迹
- 批准号:
MR/W01971X/1 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Research Grant
MRC Transition Support. CDA. Jill O'Reilly.
MRC 过渡支持。
- 批准号:
MR/T031344/1 - 财政年份:2020
- 资助金额:
$ 122.32万 - 项目类别:
Fellowship
How does the brain combine historical knowledge and online processing in decision making?
大脑如何将历史知识和在线处理结合起来进行决策?
- 批准号:
G0802459/1 - 财政年份:2009
- 资助金额:
$ 122.32万 - 项目类别:
Fellowship
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
Mechanisms and prediction of perioperative brain injury and its long-term impact: the NeuroVISION-2 biobank initiative.
围手术期脑损伤的机制和预测及其长期影响:NeuroVISION-2 生物库计划。
- 批准号:
486722 - 财政年份:2023
- 资助金额:
$ 122.32万 - 项目类别:
Operating Grants
Neural mechanisms of stress effects across hippocampal encoding and prediction
压力影响海马编码和预测的神经机制
- 批准号:
10678949 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
- 批准号:
10816883 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
- 批准号:
10685936 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Neural mechanisms of stress effects across hippocampal encoding and prediction
压力影响海马编码和预测的神经机制
- 批准号:
10524505 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Prediction error and motivated actions: Testing a specific mechanism of behavior in ecologically-valid contexts
预测误差和动机行动:在生态有效的环境中测试特定的行为机制
- 批准号:
10721876 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
- 批准号:
10342169 - 财政年份:2022
- 资助金额:
$ 122.32万 - 项目类别:
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10439967 - 财政年份:2021
- 资助金额:
$ 122.32万 - 项目类别:
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10649617 - 财政年份:2021
- 资助金额:
$ 122.32万 - 项目类别:
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10449136 - 财政年份:2021
- 资助金额:
$ 122.32万 - 项目类别: