Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety

社交焦虑治疗机制的神经标志物和治疗结果预测

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Social anxiety disorder (SAD) is one of the most common mental disorders. For unknown reasons, many patients do not respond to existing treatments. Treatment guidelines and systematic reviews often recommend CBT as the first line treatment, and then to start an SSRI adjunctively for patients who show no or only partial response to initial CBT. A major advance and step toward personalized medicine would be to identify reliable treatment predictors and to clarify the neuromechanism of treatment change. One promising approach toward improving patient outcomes is to examine the key neurocircuitry of SAD that may also serve as neuromarkers to predict treatment response. We have gathered convincing pilot data pointing to such neuromarkers to predict response to CBT for SAD. The next translational step and our primary aim is to apply state of the art computational psychiatry approaches to further establish the evidence of these neuromarkers, in line with moving psychiatry toward precision medicine. This aim will be efficiently achieved by collecting multimodal data to better elucidate key neurocircuitry in SAD compared to controls with state-of-the art neuroimaging in a well powered sample, as well as differential treatment related changes in neural circuitry (target engagement). The ultimate goal is to effectively treat all patients, not only a few and without knowing why, and to illuminate the brain circuitry associated with effective treatments in order to inform psychopathology, nosology, and therapy of common mental disorders. For these reasons, we propose to recruit a large number of patients with SAD (n = 190) and healthy controls (n = 50) to examine differences in relevant neurocircuitries that will also be used as neuromarkers of treatment response. Patients with SAD will first receive CBT group therapy. Those who show no or only partial response will then receive individual and tailored CBT plus SSRI. In addition to MRI measures, we will examine EEG and behavioral measures to determine whether there may be less expensive correlates of neuropredictors that can be easily implemented in clinical practice. We have assembled a team of skilled researchers with complementary expertise at the Massachusetts Institute of Technology (MIT; John D. E. Gabrieli, Ph.D.), Boston University (BU; Stefan G. Hofmann, Ph.D.), and McLean Hospital (Daniel Dillon, Ph.D.), as well as outstanding consultants in neuroimaging analysis (Northeastern University: Susan Whitfield- Gabrieli, Ph.D.) and machine learning applications in psychiatry (McLean Hospital: Christian Webb, Ph.D.).
项目总结/摘要 社交焦虑障碍(SAD)是最常见的精神障碍之一。由于未知的原因,许多 患者对现有治疗没有反应。治疗指南和系统评价通常建议 CBT作为一线治疗,然后对没有或仅部分显示的患者开始SSRI 对初始CBT的反应。个性化医疗的一个重大进步和步骤是识别可靠的 治疗预测因子,并阐明治疗变化的神经机制。一种有希望的方法, 改善患者预后的方法是检查SAD的关键神经回路, 来预测治疗反应。我们已经收集了令人信服的飞行员数据,指出这些神经标记物, 预测SAD对CBT的反应。下一个转化步骤和我们的主要目标是应用最先进的技术 计算精神病学方法,以进一步建立这些神经标记物的证据,符合 推动精神病学走向精准医疗这一目标将通过收集多模态数据有效地实现 为了更好地阐明SAD中的关键神经回路,与对照组相比, 动力样本,以及差异治疗相关的神经回路的变化(目标接合)。的 最终目标是有效地治疗所有患者,而不仅仅是少数患者,而且不知道为什么,并阐明 与有效治疗相关的脑回路,以告知精神病理学,疾病分类学和治疗 常见的精神疾病基于这些原因,我们建议招募大量SAD患者(n = 190)和健康对照组(n = 50),以检查相关神经回路的差异, 治疗反应的神经标志物。SAD患者将首先接受CBT组治疗。那些表现出 没有或只有部分反应,然后接受个人和定制的CBT加SSRI。除了MRI 措施,我们将检查脑电图和行为措施,以确定是否有可能更便宜 神经预测因子的相关性,可以很容易地在临床实践中实施。我们组建了一个团队, 马萨诸塞州理工学院(MIT; John D. E. Gabrieli博士),波士顿大学(BU; Stefan G. Hofmann博士),和姆克林医院(丹尼尔狄龙, Ph.D.),以及神经影像分析方面的杰出顾问(东北大学:Susan Whitfield- Gabrieli博士)以及机器学习在精神病学中的应用(姆克林Hospital:Christian Webb,Ph.D.)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL G DILLON其他文献

DANIEL G DILLON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL G DILLON', 18)}}的其他基金

Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10816883
  • 财政年份:
    2022
  • 资助金额:
    $ 84.38万
  • 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10685936
  • 财政年份:
    2022
  • 资助金额:
    $ 84.38万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10051420
  • 财政年份:
    2018
  • 资助金额:
    $ 84.38万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10295143
  • 财政年份:
    2018
  • 资助金额:
    $ 84.38万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10515641
  • 财政年份:
    2018
  • 资助金额:
    $ 84.38万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    9031824
  • 财政年份:
    2014
  • 资助金额:
    $ 84.38万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8850636
  • 财政年份:
    2014
  • 资助金额:
    $ 84.38万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8299722
  • 财政年份:
    2012
  • 资助金额:
    $ 84.38万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8444394
  • 财政年份:
    2012
  • 资助金额:
    $ 84.38万
  • 项目类别:
Emotion regulation in depression: neural bases of reappraisal
抑郁症的情绪调节:重新评估的神经基础
  • 批准号:
    7611372
  • 财政年份:
    2008
  • 资助金额:
    $ 84.38万
  • 项目类别:

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Continuing Grant
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
  • 批准号:
    2305949
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Fellowship Award
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Continuing Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
  • 批准号:
    23K28389
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341512
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341513
  • 财政年份:
    2024
  • 资助金额:
    $ 84.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了