Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety

社交焦虑治疗机制的神经标志物和治疗结果预测

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Social anxiety disorder (SAD) is one of the most common mental disorders. For unknown reasons, many patients do not respond to existing treatments. Treatment guidelines and systematic reviews often recommend CBT as the first line treatment, followed by an SSRI adjunctively for patients who show no or only partial response to CBT. A major advance toward personalized medicine would be to identify reliable treatment predictors, and then to clarify the neuromechanism of treatment change. One promising approach toward improving patient outcomes is to examine the key neurocircuitry of SAD that may also serve as neuromarkers predicting treatment response. We have gathered convincing pilot data identifying neuromarkers that predict response to CBT in adults with SAD. The next translational step, and our primary aim, is to apply state of the art computational psychiatry approaches to strengthen the evidence base for these neuromarkers, in line with moving psychiatry toward precision medicine. This aim will be efficiently achieved by collecting state-of-the-art, multimodal neuroimaging data to better elucidate the key neurocircuitry of SAD (compared to controls) in a well powered sample, while also identifying differential treatment-related changes in neural circuitry (target engagement). The ultimate goal is to effectively treat all patients, not only a few and without knowing why, and to illuminate the brain circuitry associated with effective treatments to inform psychopathology, nosology, and therapy of common mental disorders. For these reasons, we propose recruiting a large number of patients with SAD (n = 190) and healthy controls (n = 100) to examine differences in relevant neurocircuitries that will also be used as neuromarkers of treatment response. Patients with SAD will first receive CBT group therapy. Those who show no or only partial response will then receive individual and tailored CBT plus SSRI. In addition to MRI, we will examine EEG and behavioral measures to determine if there are more cost effective correlates of neuropredictors that could be easily implemented in clinical practice. We have assembled a team of skilled researchers with complementary expertise at the Massachusetts Institute of Technology (MIT; John D. E. Gabrieli, Ph.D.), Boston University (BU; Stefan G. Hofmann, Ph.D.), and McLean Hospital (Daniel Dillon, Ph.D.), as well as outstanding consultants in neuroimaging analysis (Northeastern University: Susan Whitfield- Gabrieli, Ph.D.) and machine learning applications in psychiatry (McLean Hospital: Christian Webb, Ph.D.).
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL G DILLON其他文献

DANIEL G DILLON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL G DILLON', 18)}}的其他基金

Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10685936
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10342169
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10051420
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10295143
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10515641
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    9031824
  • 财政年份:
    2014
  • 资助金额:
    $ 9.11万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8850636
  • 财政年份:
    2014
  • 资助金额:
    $ 9.11万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8299722
  • 财政年份:
    2012
  • 资助金额:
    $ 9.11万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8444394
  • 财政年份:
    2012
  • 资助金额:
    $ 9.11万
  • 项目类别:
Emotion regulation in depression: neural bases of reappraisal
抑郁症的情绪调节:重新评估的神经基础
  • 批准号:
    7611372
  • 财政年份:
    2008
  • 资助金额:
    $ 9.11万
  • 项目类别:

相似国自然基金

αβ珠蛋白融合基因—Lepore-Boston的结构及表达调控
  • 批准号:
    39370398
  • 批准年份:
    1993
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

IUCRC Phase I Boston University: Center for Systems Innovation at Scale (i-Scale)
IUCRC 第一阶段波士顿大学:大规模系统创新中心 (i-Scale)
  • 批准号:
    2333320
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2023 IEEE Communications Society School Series Boston, USA Event on 6G Communication and Wireless Technologies (IEEE ComSoc School Boston)
旅行:NSF 学生旅行补助金用于 2023 年 IEEE 通信协会学校系列美国波士顿 6G 通信和无线技术活动(IEEE ComSoc 学校波士顿)
  • 批准号:
    2325095
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
  • 批准号:
    2328774
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Continuing Grant
Conference: 2023 NSF FW-HTF PI Meeting; Boston, Massachusetts; 31 August to 1 September 2023
会议:2023 NSF FW-HTF PI 会议;
  • 批准号:
    2329684
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Conference: Broadening Participation (BPart) and NSF Network Breakfast Events at ASME-IDETC-CIE 2023; Boston, Massachusetts; 20-23 August 2023
会议:ASME-IDETC-CIE 2023 上的扩大参与 (BPart) 和 NSF 网络早餐活动;
  • 批准号:
    2327114
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Conference: 2023 AEESP Research and Education Conference in Boston, MA
会议:2023 年 AEESP 研究与教育会议,马萨诸塞州波士顿
  • 批准号:
    2319675
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
CIVIC-FA Track A: Kickstarting A Youth-Centered Green Economy For The Environmental Justice Community Of East Boston
CIVIC-FA 轨道 A:为东波士顿环境正义社区启动以青年为中心的绿色经济
  • 批准号:
    2322178
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Promoting Youth-Centric Disaster Mental Health Preparedness (DMHP) in Higher Education: A Cross-National Exploratory Study of Out-of-Province/State and International College Students (17-24 Years of Age) in Halifax, NS, Canada and Boston, MA, U.S.A.
促进高等教育中以青少年为中心的灾难心理健康准备 (DMHP):针对加拿大新斯科舍省哈利法克斯、新斯科舍省和波士顿的省外/州和国际大学生(17-24 岁)的跨国探索性研究,
  • 批准号:
    495257
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Operating Grants
Boston Early Adversity and Mortality Study (BEAMS): Linking Administrative Data to Long-Term Longitudinal Studies
波士顿早期逆境和死亡率研究 (BEAMS):将行政数据与长期纵向研究联系起来
  • 批准号:
    10795559
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
Support for Student Teams to Participate in International Challenge at Annual Conference of American Society of Precision Engineering; Boston, Massachusetts; 13-18 November 2023
支持学生团队参加美国精密工程学会年会国际挑战赛;
  • 批准号:
    2332102
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了