Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety

社交焦虑治疗机制的神经标志物和治疗结果预测

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Social anxiety disorder (SAD) is one of the most common mental disorders. For unknown reasons, many patients do not respond to existing treatments. Treatment guidelines and systematic reviews often recommend CBT as the first line treatment, and then to start an SSRI adjunctively for patients who show no or only partial response to initial CBT. A major advance and step toward personalized medicine would be to identify reliable treatment predictors and to clarify the neuromechanism of treatment change. One promising approach toward improving patient outcomes is to examine the key neurocircuitry of SAD that may also serve as neuromarkers to predict treatment response. We have gathered convincing pilot data pointing to such neuromarkers to predict response to CBT for SAD. The next translational step and our primary aim is to apply state of the art computational psychiatry approaches to further establish the evidence of these neuromarkers, in line with moving psychiatry toward precision medicine. This aim will be efficiently achieved by collecting multimodal data to better elucidate key neurocircuitry in SAD compared to controls with state-of-the art neuroimaging in a well powered sample, as well as differential treatment related changes in neural circuitry (target engagement). The ultimate goal is to effectively treat all patients, not only a few and without knowing why, and to illuminate the brain circuitry associated with effective treatments in order to inform psychopathology, nosology, and therapy of common mental disorders. For these reasons, we propose to recruit a large number of patients with SAD (n = 190) and healthy controls (n = 50) to examine differences in relevant neurocircuitries that will also be used as neuromarkers of treatment response. Patients with SAD will first receive CBT group therapy. Those who show no or only partial response will then receive individual and tailored CBT plus SSRI. In addition to MRI measures, we will examine EEG and behavioral measures to determine whether there may be less expensive correlates of neuropredictors that can be easily implemented in clinical practice. We have assembled a team of skilled researchers with complementary expertise at the Massachusetts Institute of Technology (MIT; John D. E. Gabrieli, Ph.D.), Boston University (BU; Stefan G. Hofmann, Ph.D.), and McLean Hospital (Daniel Dillon, Ph.D.), as well as outstanding consultants in neuroimaging analysis (Northeastern University: Susan Whitfield- Gabrieli, Ph.D.) and machine learning applications in psychiatry (McLean Hospital: Christian Webb, Ph.D.).
项目总结/摘要 社交焦虑障碍(SAD)是最常见的精神障碍之一。由于未知的原因,许多 患者对现有治疗没有反应。治疗指南和系统评价通常建议 CBT作为一线治疗,然后对没有或仅部分显示的患者开始SSRI 对初始CBT的反应。个性化医疗的一个重大进步和步骤是识别可靠的 治疗预测因子,并阐明治疗变化的神经机制。一种有希望的方法, 改善患者预后的方法是检查SAD的关键神经回路, 来预测治疗反应。我们已经收集了令人信服的飞行员数据,指出这些神经标记物, 预测SAD对CBT的反应。下一个转化步骤和我们的主要目标是应用最先进的技术 计算精神病学方法,以进一步建立这些神经标记物的证据,符合 推动精神病学走向精准医疗这一目标将通过收集多模态数据有效地实现 为了更好地阐明SAD中的关键神经回路,与对照组相比, 动力样本,以及差异治疗相关的神经回路的变化(目标接合)。的 最终目标是有效地治疗所有患者,而不仅仅是少数患者,而且不知道为什么,并阐明 与有效治疗相关的脑回路,以告知精神病理学,疾病分类学和治疗 常见的精神疾病基于这些原因,我们建议招募大量SAD患者(n = 190)和健康对照组(n = 50),以检查相关神经回路的差异, 治疗反应的神经标志物。SAD患者将首先接受CBT组治疗。那些表现出 没有或只有部分反应,然后接受个人和定制的CBT加SSRI。除了MRI 措施,我们将检查脑电图和行为措施,以确定是否有可能更便宜 神经预测因子的相关性,可以很容易地在临床实践中实施。我们召集了一队 马萨诸塞州理工学院(MIT; John D. E. Gabrieli博士),波士顿大学(BU; Stefan G. Hofmann博士),和姆克林医院(丹尼尔狄龙, Ph.D.),以及神经影像分析方面的杰出顾问(东北大学:Susan Whitfield- Gabrieli,博士)以及机器学习在精神病学中的应用(姆克林医院:克里斯蒂安·韦伯博士)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL G DILLON其他文献

DANIEL G DILLON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL G DILLON', 18)}}的其他基金

Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10816883
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
Neural Markers of Treatment Mechanisms and Prediction of Treatment Outcomes in Social Anxiety
社交焦虑治疗机制的神经标志物和治疗结果预测
  • 批准号:
    10342169
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10051420
  • 财政年份:
    2018
  • 资助金额:
    $ 81.25万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10295143
  • 财政年份:
    2018
  • 资助金额:
    $ 81.25万
  • 项目类别:
Computational mechanisms of memory disruption in depression
抑郁症记忆破坏的计算机制
  • 批准号:
    10515641
  • 财政年份:
    2018
  • 资助金额:
    $ 81.25万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    9031824
  • 财政年份:
    2014
  • 资助金额:
    $ 81.25万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8850636
  • 财政年份:
    2014
  • 资助金额:
    $ 81.25万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8299722
  • 财政年份:
    2012
  • 资助金额:
    $ 81.25万
  • 项目类别:
Neuroscience of Reward-Related Learning and Memory in Depression
抑郁症中奖励相关学习和记忆的神经科学
  • 批准号:
    8444394
  • 财政年份:
    2012
  • 资助金额:
    $ 81.25万
  • 项目类别:
Emotion regulation in depression: neural bases of reappraisal
抑郁症的情绪调节:重新评估的神经基础
  • 批准号:
    7611372
  • 财政年份:
    2008
  • 资助金额:
    $ 81.25万
  • 项目类别:

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Systematization of Cognitive Behavioral Therapy based on the influence of rule-governed behavior in frequent stealing behavior
基于规则行为对频繁偷盗行为的影响的认知行为治疗的系统化
  • 批准号:
    23K18975
  • 财政年份:
    2023
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Organizational Behavior Management in Various Welfare Facilities Starting with Behavioral Records
各类福利机构的组织行为管理从行为记录入手
  • 批准号:
    23K17566
  • 财政年份:
    2023
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
An Empirical Study on a Behavioral Model for Invoking the Potential Demand of Micro-Tourism through the Provision of Behavior Change Triggers
通过提供行为改变触发因素激发微旅游潜在需求的行为模型实证研究
  • 批准号:
    23K11632
  • 财政年份:
    2023
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
  • 批准号:
    23K02986
  • 财政年份:
    2023
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
  • 批准号:
    10643478
  • 财政年份:
    2023
  • 资助金额:
    $ 81.25万
  • 项目类别:
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
  • 批准号:
    22K13722
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
  • 批准号:
    10389197
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
  • 批准号:
    10828249
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
Quantifying Behavioral Factors Related to Sedentary Behavior of Disabled Elderly
量化与残疾老年人久坐行为相关的行为因素
  • 批准号:
    22K21213
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of tsunami evacuation behavior database containing geographic characteristics and behavioral contexts and utilization of it for promoting residents' behavior to prepare for evacuation
构建包含地理特征和行为背景的海啸疏散行为数据库,并利用它来促进居民做好疏散准备的行为
  • 批准号:
    22K04641
  • 财政年份:
    2022
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了