Statistical Sciences Research institute
统计科学研究所
基本信息
- 批准号:MR/M005909/1
- 负责人:
- 金额:$ 26.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In survival studies, usually some of the observations are censored. That means the event of interest, e.g. the death of a patient, is not observed. There can be many different reasons for censoring. For example, the study may end before all patients have died. In some situations, the fact an observation was censored may in itself provide further information about the potential survival times. Consider for example the waiting list for an organ transplant. If a donor organ becomes available, usually the sickest eligible patient on the list will be prioritised for transplantation. Hence knowing an observation was censored due to transplantation tells us that this patient - if he had remained on the waiting list - would have been more likely to die within a short period of time than the average patient on the list. Ignoring this extra information when analysing the data may lead to incorrect conclusions. For example, survival probabilities for patients on the waiting list may be seriously overestimated since the sickest patients have been removed from the waiting list for transplantation. Similarly, since many of the patients receiving a transplant are already very ill, they are still at a high risk of dying shortly after the operation. This may lead to the incorrect conclusion that patients on the waiting list survive longer, on average, than patients receiving a transplant. It is therefore vital to take "informative censoring" into account accordingly when analysing the data. There is no statistical test, which could detect informative censoring in a data set. However, there is a statistical tool called sensitivity analysis, which gives an idea of the effects of informative censoring on the data analysis. If the sensitivity analysis shows these effects to be negligible, a standard analysis can be done with no detriment. If, however, the sensitivity analysis flags up a problem, then several different, sophisticated methods need to be applied to the data, in order to draw valid conclusions.The existing sensitivity analyses have several drawbacks. They are either reasonably easy to apply and to interpret, but may not always flag up problems with informative censoring, since they are based on models that are too simple to be realistic. On the other hand, more sophisticated sensitivity analyses are difficult to apply, and thus practitioners do not use them on a large scale. Moreover, there is no clear guidance as to which sensitivity analysis should be used in a specific situation, and how it can be done, so often informative censoring is ignored in practice.This is where our research comes in. Our aim is to provide a sensitivity analysis, which is as realistic as necessary to assess the impact of informative censoring, while still retaining computational simplicity. This includes a general investigation into how complex a model needs to be in order to result in a powerful sensitivity analysis for a broad range of realistic scenarios. This in itself contains many interesting and challenging statistical problems, but our main motivation to pursue this research stems from the potential impact it can have on medical research. We want to encourage practitioners to use sensitivity analyses, and thus prevent them from drawing the wrong conclusions from their data due to informative censoring. In particular, we will: (a) Assess our modelling approach, and compare different models within and outside this class, using real data from NHS Blood and Transplant (NHSBT) and the Renal Registry, and extensive simulations in order to investigate the necessary complexity of the models;(b) Provide a computer package incorporating our results, which is easy and convenient to use by practitioners. Informative censoring on waiting lists is a special case of problems known as "competing risks". After developing our methods to address this issue, we will extend them to tackle this more general problem.
在生存研究中,通常会对一些观察结果进行删失。这意味着未观察到关注事件,例如患者死亡。审查可能有许多不同的原因。例如,研究可能在所有患者死亡之前结束。在某些情况下,观察结果被删失的事实本身可能提供有关潜在生存时间的进一步信息。例如,考虑器官移植的等待名单。如果有捐赠器官可用,通常名单上病情最严重的合格患者将优先接受移植。因此,知道一个观察结果由于移植而被删失告诉我们,这个病人--如果他仍然在等待名单上--比名单上的平均病人更有可能在短时间内死亡。在分析数据时忽略这些额外的信息可能会导致错误的结论。例如,等待名单上的患者的生存概率可能被严重高估,因为病情最严重的患者已从等待移植的名单中删除。同样,由于许多接受移植的病人已经病得很重,他们在手术后不久死亡的风险仍然很高。这可能导致错误的结论,即等待名单上的患者平均存活时间比接受移植的患者更长。因此,在分析数据时,必须相应地考虑到“信息审查”。没有统计检验可以检测数据集中的信息删失。然而,有一种称为敏感性分析的统计工具,它给出了信息删失对数据分析的影响的想法。如果敏感性分析表明这些影响可以忽略不计,则可以进行标准分析而不会造成损害。然而,如果敏感性分析发现了问题,那么就需要对数据应用几种不同的、复杂的方法,以得出有效的结论。现有的敏感性分析有几个缺点。它们要么相当容易应用和解释,但可能并不总是指出信息审查的问题,因为它们基于过于简单而不现实的模型。另一方面,更复杂的敏感性分析难以应用,因此从业人员不会大规模使用。此外,对于在特定情况下应该使用哪种敏感性分析以及如何进行敏感性分析,没有明确的指导,因此在实践中经常忽略信息审查,这就是我们研究的原因。我们的目标是提供一个敏感性分析,这是现实的,必要的信息审查评估的影响,同时仍然保留计算简单。这包括对模型需要有多复杂进行一般调查,以便为广泛的现实场景进行强大的敏感性分析。这本身就包含了许多有趣和具有挑战性的统计问题,但我们进行这项研究的主要动机源于它对医学研究的潜在影响。我们希望鼓励从业者使用敏感性分析,从而防止他们因信息审查而从数据中得出错误的结论。我们尤其会:(a)评估我们的建模方法,并使用来自NHS血液和移植(NHSBT)和肾脏登记处的真实的数据和广泛的模拟来比较这一类别内外的不同模型,以研究模型的必要复杂性;(B)提供一个包含我们的结果的计算机包,该计算机包易于从业人员使用。对等候名单的信息审查是被称为“竞争风险”的问题的一个特例。在开发了解决这个问题的方法之后,我们将扩展它们来解决这个更普遍的问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity analysis for informative censoring in parametric survival models: an evaluation of the method
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Panagiotis Bompotas;A. Kimber;Stefanie Biedermann
- 通讯作者:Panagiotis Bompotas;A. Kimber;Stefanie Biedermann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefanie Biedermann其他文献
Optimal design for experiments with possibly incomplete observations
可能存在不完整观察结果的实验的优化设计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. M. Lee;Stefanie Biedermann;R. Mitra - 通讯作者:
R. Mitra
Constrained optimal discrimination designs for Fourier regression models
傅立叶回归模型的约束最优判别设计
- DOI:
10.1007/s10463-007-0133-5 - 发表时间:
2009 - 期刊:
- 影响因子:1
- 作者:
Stefanie Biedermann;H. Dette;P. Hoffmann - 通讯作者:
P. Hoffmann
Editorial for the special issue for mODa 13: model-oriented data analysis and optimum design
- DOI:
10.1007/s00362-023-01453-w - 发表时间:
2023-07-18 - 期刊:
- 影响因子:1.100
- 作者:
David C. Woods;Stefanie Biedermann;Chiara Tommasi - 通讯作者:
Chiara Tommasi
Optimal design when outcome values are not missing at random
当结果值不随机丢失时的最佳设计
- DOI:
10.5705/ss.202016.0526 - 发表时间:
2018 - 期刊:
- 影响因子:1.4
- 作者:
K. M. Lee;R. Mitra;Stefanie Biedermann - 通讯作者:
Stefanie Biedermann
D‐optimal designs for multiarm trials with dropouts
带退出的多臂试验的 D 最优设计
- DOI:
10.1002/sim.8148 - 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
K. M. Lee;Stefanie Biedermann;R. Mitra - 通讯作者:
R. Mitra
Stefanie Biedermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefanie Biedermann', 18)}}的其他基金
Efficient algorithms for optimal designs - a unifying approach
用于优化设计的高效算法 - 统一的方法
- 批准号:
EP/M016706/1 - 财政年份:2015
- 资助金额:
$ 26.08万 - 项目类别:
Research Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 26.08万 - 项目类别:
Standard Grant
Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
健康科学基因组研究中新出现的统计和定量问题
- 批准号:
1833416 - 财政年份:2018
- 资助金额:
$ 26.08万 - 项目类别:
Standard Grant
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 26.08万 - 项目类别:
Standard Grant
Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
- 批准号:
1844564 - 财政年份:2017
- 资助金额:
$ 26.08万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Statistical Methods for Atmospheric and Oceanic Sciences
合作研究:RNMS:大气和海洋科学统计方法
- 批准号:
1106974 - 财政年份:2011
- 资助金额:
$ 26.08万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
- 批准号:
1107046 - 财政年份:2011
- 资助金额:
$ 26.08万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Statistical Methods for Atmospheric and Oceanic Sciences
合作研究:RNMS:大气和海洋科学统计方法
- 批准号:
1106862 - 财政年份:2011
- 资助金额:
$ 26.08万 - 项目类别:
Continuing Grant
UBM-Institutional: Interdisciplinary Training and Research for Undergraduates in Biological and Mathematical/Statistical Sciences at UMBC
UBM-机构:UMBC 生物和数学/统计科学本科生的跨学科培训和研究
- 批准号:
1031420 - 财政年份:2010
- 资助金额:
$ 26.08万 - 项目类别:
Standard Grant
Training and Research Workshop on High Performance Computing in the Mathematical and Statistical Sciences
数学与统计科学高性能计算培训与研究研讨会
- 批准号:
354087-2007 - 财政年份:2007
- 资助金额:
$ 26.08万 - 项目类别:
Regional Office Discretionary Funds - Atlantic
EMSW21-VIGRE Project: VIGRE-II - "Integrated and Mentored Program of Research and Education in Statistical Sciences" (IMPRESS)
EMSW21-VIGRE 项目:VIGRE-II -“统计科学研究与教育综合和指导计划”(IMPRESS)
- 批准号:
0354189 - 财政年份:2004
- 资助金额:
$ 26.08万 - 项目类别:
Continuing Grant