Re-engineering of fungal sulphur metabolism to limit mould viability and virulence.
重新设计真菌硫代谢以限制霉菌活力和毒力。
基本信息
- 批准号:MR/N008707/1
- 负责人:
- 金额:$ 80.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On a world-wide basis, A. fumigatus is the most prominent fungal pathogen of the human lung. In Europe, the all-cause burden of Aspergillus-related lung disease exceeds 2 million cases per annum, including up to 50,000 potentially fatal cases of invasive aspergillosis. The mortality rate associated with this disease is very high, and antifungal drugs currently in use have suboptimal efficacy and result in antifungal resistance. In order to develop more successful therapies, it is necessary to better understand why A. fumigatus is able to grow in mammalian tissues. Critical to this process is metabolic versatility and the capacity to obtain nutrients from the host.I have previously shown that regulation of sulphur (S) assimilation is essential for virulence, however the exact S-source exploited in lung tissue and the in vivo fungal sulphur-related metabolic status remain unknown. Therefore, in this project I aim to clarify these two important issues, which may derive in the identification of suitable targets for the development of novel antifungal therapy.First, I will utilize state-of-the-art gene expression analysis technology to investigate the sulphur-related metabolic status during infection. This approach has the potential to identify novel pathogenic processes which will aid the development of novel antifungal strategy. Based on my preliminary data, I will concentrate on two specific S-containing molecules which are strongly suggested to be relevant for virulence: methionine and sulphide (H2S).Methionine is an amino acid whose biosynthesis appears to be essential for A. fumigatus, in contrast to closely related fungal species but in line with other pathogenic fungal species. I will determine what aspect of the biosynthetic pathway is essential, as well as the functional relevance of this activity for fungal survival.In addition, I will look for compounds that specifically inhibit the activity of the fungal cobalamin-independent methionine synthase in vitro, and test their suitability as anti-aspergillosis drugs in animal models of disease. I will also ask whether A. fumigatus exploits H2S as sulphur source during infection. Sulphide is a gas produced in the human tissues, including the lungs, as signalling molecule. It has been described that H2S modifies proteins inside the cells, to regulate their activity. This protein alteration, termed sulfhydration, has been observed in bacteria and mammalian cells, demonstrating its conservation throughout evolution, and therefore, highlighting its importance. Nothing is known about sulfhydration in fungal species, I will therefore investigate whether this protein alteration occurs in A. fumigatus and whether it is important for the fungus to grow within the lungs.I will use the gathered results to look for correlates between fungal and/or mammalian sulphur metabolism, and risk for aspergillosis. This will be achieved by interrogation of the human and fungal genome data curated by the University of Manchester. Importantly, these analyses may underscore relevant epidemiologic information which may aid patient management.
在世界范围内,烟曲霉是人类肺部最突出的真菌病原体。在欧洲,曲霉相关肺部疾病的全因负担每年超过200万例,其中包括多达5万例可能致命的侵袭性曲霉病。这种疾病的死亡率非常高,目前使用的抗真菌药物疗效不佳,并导致抗真菌耐药性。为了开发更成功的治疗方法,有必要更好地了解烟曲霉为何能够在哺乳动物组织中生长。这个过程的关键是代谢的多样性和从宿主获得营养的能力。我之前已经表明,硫(S)同化的调节对毒力至关重要,但是肺组织中硫的确切来源和体内真菌硫相关的代谢状态仍然未知。因此,在这个项目中,我的目的是澄清这两个重要的问题,这可能源于确定合适的靶点,以开发新的抗真菌疗法。首先,我将利用最先进的基因表达分析技术来研究感染过程中与硫相关的代谢状态。这种方法具有识别新的致病过程的潜力,这将有助于开发新的抗真菌策略。根据我的初步数据,我将集中研究两种被强烈认为与毒力相关的特定含s分子:蛋氨酸和硫化物(H2S)。蛋氨酸是一种氨基酸,它的生物合成似乎是烟曲霉必需的,与密切相关的真菌物种相反,但与其他致病真菌物种一致。我将确定生物合成途径的哪个方面是必不可少的,以及该活动与真菌生存的功能相关性。此外,我将在体外寻找特异性抑制真菌钴胺非依赖性蛋氨酸合酶活性的化合物,并在动物疾病模型中测试其作为抗曲霉药物的适用性。我也会问烟曲霉在感染过程中是否利用H2S作为硫源。硫化物是人体组织(包括肺)中产生的一种气体,作为信号分子。据描述,H2S修饰细胞内的蛋白质,以调节其活性。在细菌和哺乳动物细胞中已经观察到这种被称为硫水合作用的蛋白质改变,证明了它在整个进化过程中的保守性,因此,突出了它的重要性。真菌种类的磺化作用尚不清楚,因此我将研究这种蛋白质改变是否发生在烟曲霉中,以及它对真菌在肺部生长是否重要。我将使用收集到的结果来寻找真菌和/或哺乳动物硫代谢与曲霉病风险之间的相关性。这将通过对曼彻斯特大学(University of Manchester)整理的人类和真菌基因组数据的分析来实现。重要的是,这些分析可能强调相关的流行病学信息,这可能有助于患者管理。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting methionine synthase in a fungal pathogen causes a metabolic imbalance that impacts cell energetics, growth and virulence
- DOI:10.1101/2020.06.04.131862
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Jennifer Scott;Mónica Sueiro-Olivares;Benjamin P. Thornton;R. Owens;H. Muhamadali;Rachael Fortune-Grant;Darren D. Thomson;Riba Thomas;K. Hollywood;S. Doyle;R. Goodacre;L. Tabernero;E. Bignell;J. Amich
- 通讯作者:Jennifer Scott;Mónica Sueiro-Olivares;Benjamin P. Thornton;R. Owens;H. Muhamadali;Rachael Fortune-Grant;Darren D. Thomson;Riba Thomas;K. Hollywood;S. Doyle;R. Goodacre;L. Tabernero;E. Bignell;J. Amich
Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence.
- DOI:10.1128/mbio.01985-20
- 发表时间:2020-10-13
- 期刊:
- 影响因子:6.4
- 作者:Scott J;Sueiro-Olivares M;Thornton BP;Owens RA;Muhamadali H;Fortune-Grant R;Thomson D;Thomas R;Hollywood K;Doyle S;Goodacre R;Tabernero L;Bignell E;Amich J
- 通讯作者:Amich J
Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response.
- DOI:10.1371/journal.pbio.3001247
- 发表时间:2021-06
- 期刊:
- 影响因子:9.8
- 作者:Sueiro-Olivares M;Scott J;Gago S;Petrovic D;Kouroussis E;Zivanovic J;Yu Y;Strobel M;Cunha C;Thomson D;Fortune-Grant R;Thusek S;Bowyer P;Beilhack A;Carvalho A;Bignell E;Filipovic MR;Amich J
- 通讯作者:Amich J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Amich其他文献
Exogenous M-CSF Protects from Lethal <em>a. Fumigatus</em> pulmonary Infection By Tissue-Resident Alveolar Macrophages Early after Hematopoietic Cell Transplantation
- DOI:
10.1182/blood-2022-166278 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Dalia Sheta;Andreas Beilhack;Hermann Einsele;Katrin G Heinze;Zeinab Mokhtari;Jorge Amich;Ulrich Terpitz;Nora Trinks;Marlene Strobel;Yidong Yu - 通讯作者:
Yidong Yu
Toward the consensus of definitions for the phenomena of antifungal tolerance and persistence in filamentous fungi
针对丝状真菌中抗真菌耐受性和持久性现象的定义达成共识
- DOI:
10.1128/mbio.03475-24 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:4.700
- 作者:
Jorge Amich;Michael Bromley;Gustavo H. Goldman;Clara Valero - 通讯作者:
Clara Valero
The many roles of sulfur in the fungal–host interaction
硫在真菌-宿主相互作用中的多种作用
- DOI:
10.1016/j.mib.2024.102489 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Jorge Amich - 通讯作者:
Jorge Amich
Exogenous M-CSF Protects from Lethal ema. Fumigatus/em pulmonary Infection By Tissue-Resident Alveolar Macrophages Early after Hematopoietic Cell Transplantation
外源性巨噬细胞集落刺激因子(M-CSF)可保护造血细胞移植后早期组织驻留肺泡巨噬细胞免受致死性烟曲霉/肺感染。
- DOI:
10.1182/blood-2022-166278 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:23.100
- 作者:
Dalia Sheta;Andreas Beilhack;Hermann Einsele;Katrin G Heinze;Zeinab Mokhtari;Jorge Amich;Ulrich Terpitz;Nora Trinks;Marlene Strobel;Yidong Yu - 通讯作者:
Yidong Yu
Jorge Amich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
软骨调节素调控BMSCs骨和软骨双向分化平衡的研究
- 批准号:81272128
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于脂肪干细胞的同种异体肌腱缺损修复及机制
- 批准号:81101359
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
脂肪来源干细胞诱导尿路上皮细胞及其机制的研究
- 批准号:81070605
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Ihh在组织工程骨构建中作用和机制研究
- 批准号:30973069
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
Leydig干细胞纯化、扩增及雄激素分泌组织构建
- 批准号:30970736
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
- 批准号:30901566
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
- 批准号:30800232
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo Monitoring of Neutrophil Function in Patients after Stem Cell Transplant
干细胞移植后患者中性粒细胞功能的体内监测
- 批准号:
10679553 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
A Redesigning Existing Drugs against Indispensable Targets (ReEDIT) platform technology for discovery of novel drugs to treat fungal infections
针对必要目标重新设计现有药物 (ReEDIT) 平台技术,用于发现治疗真菌感染的新药
- 批准号:
10600245 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Development and application of auxin-inducible degradation in Candida pathogens
念珠菌病原体生长素诱导降解的开发和应用
- 批准号:
10742370 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
A Universal Fungal Transposase System for Increasing Natural Product and Protein Titers
用于提高天然产物和蛋白质滴度的通用真菌转座酶系统
- 批准号:
10760459 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Engineering Fungal Nonribosomal Peptide Synthetases for Novel Alkaloids
新型生物碱的工程真菌非核糖体肽合成酶
- 批准号:
DP230101545 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Discovery Projects
EFRI ELiS: Engineering Fungal Platforms for Sustainable Biomining and Recovery of Valuable Metals from Electronic Wastes
EFRI ELiS:用于可持续生物采矿和从电子废物中回收有价金属的工程真菌平台
- 批准号:
2318122 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
Leveraging genomic approaches to define sterol transport in Cryptococcus neoformans
利用基因组方法定义新型隐球菌中的甾醇转运
- 批准号:
10727128 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Fungal Virulence: Identifying the factors that control virulence and the growth in parasitic form of Coccidioides
真菌毒力:确定控制球孢子菌毒力和寄生形式生长的因素
- 批准号:
10554388 - 财政年份:2022
- 资助金额:
$ 80.07万 - 项目类别: