Single-molecule analysis of influenza virus transcription and replication
流感病毒转录和复制的单分子分析
基本信息
- 批准号:MR/N010744/1
- 负责人:
- 金额:$ 53.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed work involves using special microscopy methods to understand how the flu virus copies its genetic material. The flu (influenza) virus is the microscopic pathogen that causes flu in human and in animals. Naturally, the flu virus is found in wild birds; however, it has the ability through mutations to move to other host organisms, including humans. Such transmission leads to mild annual epidemics as well as severe pandemics, such as the Spanish flu 1918 pandemic, which was one of the deadliest disasters in human history, responsible for over 50 million deaths worldwide. Slightly different versions of the flu virus were also responsible for the swine flu outbreak in 2009 and the H5N1 bird flu. Bird flu was especially devastating for the poultry industry since millions of birds need to be culled, resulting in huge economic losses; it also led to exposure of farmers to bird flu, which increased the danger of bird flu outbreaks in poultry leading to viruses with the ability to be transmitted within human populations. Our research will help the scientific community to understand better how the virus propagates and help in efforts to control and stop its spread.The flu virus has its genetic material ("genome") made of tiny RNA fragments. In order to multiply, the virus copies its RNA using a tiny viral molecular machine called an RNA polymerase. Despite the flu virus being one of the best-studied viruses, we are still unsure about how exactly the genomic copying is achieved and controlled. One of the reasons for this is that it was impossible to study the copying of its RNA genes directly. Direct observation is difficult since the polymerase machinery is very small, it is difficult to generate it in a pure form, and it is difficult to assemble the machinery on the RNA to be copied in an efficient and homogeneous way.Through a collaboration of a laboratory that studies the virus with a laboratory that develops and uses advanced optical microscopes, we can now overcome these difficulties and want to observe the copying of the viral genome directly, as it happens. We plan to achieve this by preparing fluorescent polymerase machines (for example, a protein that fluoresces green) and fluorescent bits of the viral RNA (for example, an RNA that fluoresces red), and use the direct observation of the different colours to understand how the polymerase recognizes the RNA, and copies it. We can observe these changes directly as they occur by anchoring the RNA or the polymerase machine on a glass surface and then recording fast "molecular movies" of the copying of the viral genetic material.This fascinating observation is performed using a special microscope, which we call a "single-molecule fluorescence microscope". This microscope is carefully designed to allow detection and monitoring of individual ("single") fluorescent molecules present in a detection zone (as opposed to conventional microscopes that require thousands or millions of molecules to be present in a detection zone). The single-molecule fluorescence microscope allows one to determine the number of parts that make up a biological machine, to measure how strong the parts bind to each other, how far apart the parts are spaced and at what orientation, and what are the movements of the parts when the tiny biological machine works. We are also very interested in studying how tiny differences in the structure of the copying machine allow the virus to move for a bird host to humans. We anticipate that our work will allow us to understand better how the virus copies its RNA and use this new information and our microscopes to find new ways to combat the disease. Our discoveries should also help understand and control other viruses that cause danger to humans and animals.
这项工作涉及使用特殊的显微镜方法来了解流感病毒如何复制其遗传物质。流感病毒是引起人类和动物流感的微观病原体。自然,流感病毒在野生鸟类中发现;然而,它有能力通过突变转移到其他宿主生物,包括人类。这种传播导致轻微的年度流行病以及严重的流行病,例如1918年西班牙流感大流行,这是人类历史上最致命的灾难之一,造成全世界5 000多万人死亡。2009年爆发的猪流感和H5 N1禽流感也是由不同版本的流感病毒引起的。禽流感对家禽业造成的破坏尤其严重,因为数百万只家禽需要被扑杀,造成巨大的经济损失;它还导致农民接触禽流感,这增加了家禽中爆发禽流感的危险,导致病毒能够在人群中传播。我们的研究将有助于科学界更好地了解病毒如何传播,并有助于控制和阻止其传播。流感病毒的遗传物质(“基因组”)由微小的RNA片段组成。为了繁殖,病毒使用一种称为RNA聚合酶的微小病毒分子机器复制其RNA。尽管流感病毒是研究得最好的病毒之一,但我们仍然不确定基因组复制是如何实现和控制的。其中一个原因是不可能直接研究其RNA基因的复制。直接观察是困难的,因为聚合酶机器非常小,很难以纯净的形式产生它,并且很难将机器组装在RNA上以高效和均匀的方式复制。通过研究病毒的实验室与开发和使用先进光学显微镜的实验室的合作,我们现在可以克服这些困难,并希望直接观察病毒基因组的复制过程。我们计划通过制备荧光聚合酶机器来实现这一目标(例如,发出绿色荧光的蛋白质)和病毒RNA的荧光片段(例如,发红色荧光的RNA),并使用不同颜色的直接观察来了解聚合酶如何识别RNA,我们可以通过将RNA或聚合酶机器锚定在玻璃表面,然后快速记录“分子电影”,病毒遗传物质的复制。这一令人着迷的观察是使用特殊显微镜进行的,我们称之为“单分子荧光显微镜”。该显微镜经过精心设计,允许检测和监测检测区中存在的单个(“单个”)荧光分子(与传统显微镜相反,传统显微镜需要数千或数百万个分子存在于检测区中)。单分子荧光显微镜允许人们确定组成生物机器的部件的数量,测量部件彼此结合的强度,部件之间的距离和方向,以及当微小的生物机器工作时部件的运动。我们也非常有兴趣研究复制机结构的微小差异如何使病毒从鸟类宿主转移到人类。我们预计,我们的工作将使我们能够更好地了解病毒如何复制其RNA,并利用这些新信息和我们的显微镜来寻找对抗这种疾病的新方法。我们的发现也应该有助于了解和控制其他对人类和动物造成危险的病毒。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time analysis of single influenza virus replication complexes reveals large promoter-dependent differences in initiation dynamics
单一流感病毒复制复合物的实时分析揭示了起始动力学中启动子依赖性的巨大差异
- DOI:10.1101/617613
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Robb N
- 通讯作者:Robb N
Single-Molecule Analysis of the Influenza Virus Replication Initiation Mechanism
流感病毒复制启动机制的单分子分析
- DOI:10.1016/j.bpj.2017.11.1370
- 发表时间:2018
- 期刊:
- 影响因子:3.4
- 作者:Robb N
- 通讯作者:Robb N
Real-time analysis of single influenza virus replication complexes reveals large promoter-dependent differences in initiation dynamics.
对单一流感病毒复制复合物的实时分析揭示了起始动力学中启动子依赖性的巨大差异。
- DOI:10.1093/nar/gkz313
- 发表时间:2019
- 期刊:
- 影响因子:14.9
- 作者:Robb NC
- 通讯作者:Robb NC
Rapid functionalisation and detection of viruses via a novel Ca 2+ -mediated virus-DNA interaction
通过新型 Ca 2 介导的病毒-DNA 相互作用快速功能化和检测病毒
- DOI:10.1101/629303
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Robb N
- 通讯作者:Robb N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Achillefs Kapanidis其他文献
Detection of Specific mRNA Synthesis in Rotavirus using Single Molecule Hybridization
- DOI:
10.1016/j.bpj.2011.11.1587 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Javier Periz;Cristina Celma;Justin Pinkney;Polly Roy;Achillefs Kapanidis - 通讯作者:
Achillefs Kapanidis
Single-Molecule Analysis of Transcription
- DOI:
10.1016/j.bpj.2008.12.1085 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Richard Ebright;Shimon Weiss;Anirban Chakraborty;Dongye Wang;You Korlann;Achillefs Kapanidis;Emmanuel Margeat - 通讯作者:
Emmanuel Margeat
Ribosome phenotypes for rapid classification of antibiotic-susceptible and resistant strains of Escherichia coli
用于快速分类大肠杆菌对抗生素敏感和耐药菌株的核糖体表型
- DOI:
10.1038/s42003-025-07740-6 - 发表时间:
2025-02-26 - 期刊:
- 影响因子:5.100
- 作者:
Alison Farrar;Piers Turner;Hafez El Sayyed;Conor Feehily;Stelios Chatzimichail;Sammi Ta;Derrick Crook;Monique Andersson;Sarah Oakley;Lucinda Barrett;Christoffer Nellåker;Nicole Stoesser;Achillefs Kapanidis - 通讯作者:
Achillefs Kapanidis
Single-Molecule DNA Biosensors for Quantitative Transcription Factor Detection
- DOI:
10.1016/j.bpj.2009.12.3333 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Robert Crawford;Konstantinos Lymperopoulos;Joseph P. Torella;Mike Heilemann;Ling C. Hwang;Seamus J. Holden;Achillefs Kapanidis - 通讯作者:
Achillefs Kapanidis
Quantitative Studies of Transcription in E.coli With Subdiffraction Fluorescence Microscopy
- DOI:
10.1016/j.bpj.2009.12.395 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Ulrike Endesfelder;Kieran Finan;Peter Cook;Achillefs Kapanidis;Mike Heilemann - 通讯作者:
Mike Heilemann
Achillefs Kapanidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Achillefs Kapanidis', 18)}}的其他基金
Single-molecule analysis of transcription-elongation regulation mechanisms in living bacteria
活细菌转录延伸调控机制的单分子分析
- 批准号:
BB/X015637/1 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
High-throughput single-molecule analysis of the influenza A genome structure and assembly
甲型流感基因组结构和组装的高通量单分子分析
- 批准号:
BB/V001868/1 - 财政年份:2020
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Single-molecule analysis of double-stranded DNA break repair in living bacteria
活细菌双链 DNA 断裂修复的单分子分析
- 批准号:
BB/S008896/1 - 财政年份:2019
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Interplay of bacterial transcription and chromosome organisation in vivo
体内细菌转录和染色体组织的相互作用
- 批准号:
BB/N018656/1 - 财政年份:2016
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Single-molecule DNA biosensors for rapid microbial detection
用于快速微生物检测的单分子 DNA 生物传感器
- 批准号:
BB/J020516/1 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Single-molecule analysis of initial transcription in vitro and in silico
体外和计算机中初始转录的单分子分析
- 批准号:
BB/H01795X/1 - 财政年份:2010
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Mechanistic analysis of gene-expression machinery and DNA nanodevices using single-molecule fluorescence spectroscopy
使用单分子荧光光谱法对基因表达机制和 DNA 纳米器件进行机理分析
- 批准号:
EP/D058775/1 - 财政年份:2006
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
相似国自然基金
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
中性粒细胞在体内条件下重编程为造血干祖细胞的研究
- 批准号:92068101
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
活细胞单分子成像定量研究EGFR内吞途径命运选择
- 批准号:32000557
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
- 批准号:32000518
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
- 批准号:32000504
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
黏附分子ICAM-1对于肺癌细胞生存和凋亡的作用及机制研究
- 批准号:31900536
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
SIRT1调控突变型p53肿瘤细胞死亡的分子机制研究
- 批准号:31970689
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 53.61万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 53.61万 - 项目类别:
Research Grant
Broadly neutralizing antibody combinations with single virions in HIV+ plasma
HIV血浆中单一病毒粒子的广泛中和抗体组合
- 批准号:
10699469 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Single-Molecule Imaging of Ubiquitination Dynamics in Neurons
神经元泛素化动力学的单分子成像
- 批准号:
10817362 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Single molecule oligopeptide fingerprinting based on templated self-assembly of oligonucleotide structures
基于寡核苷酸结构模板化自组装的单分子寡肽指纹识别
- 批准号:
10838153 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
CSHL Single Cell Analysis Course (2023-2027)
CSHL单细胞分析课程(2023-2027)
- 批准号:
10627446 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Spatial single cell analysis of the human Alzheimer's Disease brain
人类阿尔茨海默病大脑的空间单细胞分析
- 批准号:
10822988 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别: