Sequential surface EMG recordings in motor neurone disease. Fasciculations as a biomarker of motor neurone health.

运动神经元疾病的连续表面肌电图记录。

基本信息

  • 批准号:
    MR/P000983/1
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Motor neurone disease (MND) is diagnosed in 1,200 people in the UK every year. It causes progressive paralysis and death on average within three years of symptom onset and there is currently only one licensed drug (riluzole) with only modest survival benefit. Drug trials in MND are time-consuming for patients and expensive for funders. A biomarker of disease activity is urgently needed to accelerate the pace of drug discovery. MND is caused by the progressive dysfunction and death of motor neurons. Ailing motor neurons in the spinal cord are electrically unstable and spontaneously discharge electrical impulses that cause small groups of muscle fibres to twitch (known as fasciculations). When the motor neuron becomes electrically unresponsive these fasciculations stop and the motor neuron subsequently dies. There is also some experimental evidence that the fasciculations may cause chemical disturbances that hasten the death of motor neurons. These muscle fasciculations can be seen under the skin and are one of the hallmark clinical signs of MND. Thus, recording the site and frequency of fasciculations over time may provide a good measure of motor neuron health. Conventional electrical testing (needle electromyography, NEMG) involves putting a fine needle deep into muscles to record fasciculations and this can only be done in a hospital. NEMG only detects electrical activity within a minute field, records data for only a few minutes and is quite painful so few patients would tolerate repeated testing. High-density surface EMG (HDSEMG), using a non-invasive sensor that sticks to the skin, can record fasciculations over a field that is 100 times larger than the needle. The test is painless so fasciculations can be recorded over many hours and repeated frequently.Under the guidance of Professors Chris Shaw and Kerry Mills, eminent in their respective fields of motor neurone disease and neurophysiology, I, as a clinician and neurology trainee, am currently undertaking a six-month preparatory feasibility study at King's College London. In this study, we are making use of commercially available HDSEMG sensors to record fasciculations at rest in patients with MND. We have recruited eight patients and are taking representative recordings from all four limbs simultaneously. The purpose of this study is to ensure this method is comfortable and convenient for patients, and that these preliminary data can be interpreted in the way we expect. We predict that the site, frequency and shape of fasciculations might provide a more sensitive measure of disease progression in an individual. Once calibrated, this method may then be used to assess the positive impact of a new drug if it reduces the regional spread and frequency of fasciculations. In order to calibrate this technique, we will conduct a 12-month longitudinal study, recruiting 24 patients from the King's College Hospital Motor Nerve Clinic, comprising a mixture of patients with MND and those with benign fasciculation syndrome. Patients in this latter group have fasciculations but do not develop weakness and have normal lifespans. They are therefore an optimal control group. At each visit, we will take resting HDSEMG recordings from all four limbs and perform standard clinical measures of disease progression. In addition to survival, these are the standard tests we use to see whether a drug is working in clinical trials.Ultimately, through collaboration with Bioengineering colleagues at Imperial College London, we hope to design a wearable ergonomic garment with embedded HDSEMG and remote data transfer capabilities. We envisage testing and calibrating this new equipment against our validated, well-established system. The portability of such a powerful tool will allow the assessment of patients in their own homes, potentially increasing the intensity of objective monitoring. This will prove an invaluable addition to future clinical drug trials.
在英国,每年有1200人被诊断为运动神经元疾病(MND)。它平均会在症状出现后三年内导致进行性瘫痪和死亡,目前只有一种获得许可的药物(利鲁唑)仅有适度的生存益处。MND的药物试验对患者来说很耗时,对资助者来说也很昂贵。为了加快药物发现的步伐,迫切需要一种疾病活动的生物标志物。MND是由运动神经元进行性功能障碍和死亡引起的。脊髓中有问题的运动神经元是电不稳定的,会自发地释放电脉冲,导致小群肌肉纤维抽搐(称为神经束)。当运动神经元变得无电反应时,这些神经束停止,运动神经元随后死亡。也有一些实验证据表明,神经束可能会引起化学干扰,加速运动神经元的死亡。这些肌束在皮下可见,是MND的标志性临床症状之一。因此,随着时间的推移,记录神经束的位置和频率可能会很好地衡量运动神经元的健康状况。传统的电测试(针状肌电图,NEMG)需要将一根细针深入肌肉以记录肌束,这只能在医院完成。NEMG只检测到一分钟内的电活动,记录数据的时间只有几分钟,而且非常痛苦,所以很少有患者会忍受重复测试。高密度表面肌电(HDSEMG)使用附着在皮肤上的非侵入性传感器,可以记录比针大100倍的区域内的束状信号。这项测试是无痛的,因此可以在几个小时内记录下束状肌,并频繁地重复。在各自运动神经元疾病和神经生理学领域的杰出教授克里斯·肖和克里·米尔斯的指导下,作为临床医生和神经学实习生,我目前正在伦敦国王学院进行为期六个月的预备性可行性研究。在这项研究中,我们利用商业上可用的HDSEMG传感器来记录MND患者的静息肌束。我们已经招募了8名患者,并同时从所有四肢进行有代表性的记录。这项研究的目的是确保这种方法对患者来说是舒适和方便的,并确保这些初步数据可以以我们预期的方式进行解释。我们预测,束状物的位置、频率和形状可能会为个体的疾病进展提供更敏感的衡量标准。一旦校准,这种方法就可以用来评估一种新药的积极影响,如果它减少了局部扩散和束状病变的频率。为了校准这项技术,我们将进行一项为期12个月的纵向研究,从国王学院医院运动神经诊所招募24名患者,包括MND患者和良性颤动综合征患者。后一组患者有束状症状,但不会出现虚弱和正常寿命。因此,他们是一个最佳的控制组。在每次就诊时,我们将采集所有四肢的静息HDSEMG记录,并执行疾病进展的标准临床测量。除了存活,这些是我们在临床试验中用来判断药物是否有效的标准测试。最终,通过与伦敦帝国理工学院的生物工程同事合作,我们希望设计一种具有嵌入式HDSEMG和远程数据传输功能的可穿戴人体工程学服装。我们设想根据我们经过验证的、完善的系统来测试和校准这一新设备。如此强大的工具的便携性将使患者能够在自己的家中进行评估,潜在地增加了客观监测的强度。事实证明,这将是对未来临床药物试验的宝贵补充。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fasciculations demonstrate daytime consistency in amyotrophic lateral sclerosis.
肌萎缩性侧索硬化症的肌束颤动表现出白天的一致性。
  • DOI:
    10.1002/mus.26864
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Bashford J
  • 通讯作者:
    Bashford J
Preprocessing surface EMG data removes voluntary muscle activity and enhances SPiQE fasciculation analysis
  • DOI:
    10.1016/j.clinph.2019.09.015
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Bashford, J.;Wickham, A.;Shaw, C. E.
  • 通讯作者:
    Shaw, C. E.
Corrigendum to 'SPiQE: An automated analytical tool for detecting and characterising fasciculations in amyotrophic lateral sclerosis' [Clin. Neurophysiol. 130 (2019) 1083-1090].
“SPiQE:一种用于检测和表征肌萎缩侧索硬化症肌束颤动的自动化分析工具”的勘误表 [Clin.
Accurate interpretation of fasciculation frequency in amyotrophic lateral sclerosis hinges on both muscle type and stage of disease.
  • DOI:
    10.1093/braincomms/fcaa189
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Bashford JA;Wickham A;Iniesta R;Drakakis EM;Boutelle MG;Mills KR;Shaw CE
  • 通讯作者:
    Shaw CE
SPiQE: An automated analytical tool for detecting and characterising fasciculations in amyotrophic lateral sclerosis
  • DOI:
    10.1016/j.clinph.2019.03.032
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Bashford, J.;Wickham, A.;Shaw, C.
  • 通讯作者:
    Shaw, C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Bashford其他文献

N°135 – Fasciculation electromechanical latency is prolonged in amyotrophic lateral sclerosis
  • DOI:
    10.1016/j.clinph.2023.03.136
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Domen Planinc;Nazifa Muhamood;Emma Hodson-Tole;James Bashford
  • 通讯作者:
    James Bashford

James Bashford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

“surface-17”量子纠错码在超导量子电路中的实现
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
  • 批准号:
    41974039
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于surface hopping方法探索有机半导体中激子解体机制
  • 批准号:
    LY19A040007
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
  • 批准号:
    11574379
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
  • 批准号:
    11426209
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
AdS/CFT对偶的研究
  • 批准号:
    11305131
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
AdS/CFT对偶中的非局域算符
  • 批准号:
    11247231
  • 批准年份:
    2012
  • 资助金额:
    5.0 万元
  • 项目类别:
    专项基金项目
表面引发聚合反应对材料表面疏水性影响的计算机模拟研究
  • 批准号:
    21104025
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-Density surface EMG based CMAP scan for motor unit number estimation
基于高密度表面肌电图的 CMAP 扫描,用于估计运动单位数量
  • 批准号:
    10424869
  • 财政年份:
    2021
  • 资助金额:
    $ 29.98万
  • 项目类别:
Elucidation of muscle function in sarcopenia using a novel ultrasound-high-density surface EMG simultaneous measurement system
使用新型超声高密度表面肌电图同步测量系统阐明少肌症的肌肉功能
  • 批准号:
    19K17041
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Novel Approach for Investigation on Lateral Fall Injuries and Mitigation Strategies using Electromyography (EMG) and Bayesian Optimization
使用肌电图 (EMG) 和贝叶斯优化研究横向跌倒损伤和缓解策略的新方法
  • 批准号:
    19K15250
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving ALS Diagnosis using Needle I-EMG
使用针 I-EMG 改善 ALS 诊断
  • 批准号:
    9905446
  • 财政年份:
    2019
  • 资助金额:
    $ 29.98万
  • 项目类别:
EMG Voice Restoration
肌电图语音恢复
  • 批准号:
    10009728
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
Leg function analysis using the surface EMG for establishment of a new rehabilitation method
利用表面肌电图进行腿部功能分析,建立新的康复方法
  • 批准号:
    18K17706
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMG Voice Restoration
肌电图语音恢复
  • 批准号:
    10376786
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
Détection de mouvements à base d'intelligence artificielle et capteur de surface EMG haute densité
运动检测、智能技术基础和表面肌电图高密度捕获
  • 批准号:
    527979-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of swallowing function evaluation method using multichannel surface EMG signals of suprahyoid and infrahyoid muscles
舌骨上、舌下肌多通道表面肌电信号吞咽功能评价方法的开发
  • 批准号:
    18H03557
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-density Surface EMG Assessment of Motor Unit Alterations of the External Anal Sphincter Associated with Aging
高密度表面肌电图评估与衰老相关的肛门外括约肌运动单位改变
  • 批准号:
    9566428
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了