EMG Voice Restoration
肌电图语音恢复
基本信息
- 批准号:10009728
- 负责人:
- 金额:$ 50.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-16 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAffinityAlgorithm DesignAlgorithmsArchitectureArticulatorsAugmentative and Alternative CommunicationCancer SurvivorClinicalCommunicationComputer softwareComputersCosmeticsCustomDataDevicesDiscriminationElectrolarynxEngineeringEye MovementsFaceFutureGeneral HospitalsGenetic TranscriptionGesturesGoalsHandHumanImpairmentIndividualIntuitionLaryngectomeeLaryngectomyLifeMalignant neoplasm of larynxMassachusettsMeasuresMental HealthMethodsModelingMotorMuscleNeckOperative Surgical ProceduresOral cavityOrthographyParticipantPatient Self-ReportPerformancePersonsPhaseProductionProtocols documentationProviderQuality of lifeSeriesSignal TransductionSmall Business Innovation Research GrantSocial InteractionSocializationSpeechSpeech DisordersStressSurfaceSystemTablet ComputerTechnologyTestingTextTimeTrainingTranscriptTranslationsVariantVisionVoiceWorkbasedesigndigitalhandheld mobile deviceimprovedindexinglexicalmalignant oropharynx neoplasmneural networkphrasesprototyperestorationsensorshowing emotionsocialspeech recognitionsuccesstime usevocalizationwearable sensor technology
项目摘要
Nearly 7.5 million people live without the ability to vocalize effectively. Existing augmentative and alternative
communication (AAC) technology provides some function for these individuals, typically by converting
physical gestures, eye movements or text into words that can be acoustically synthesized or visually displayed.
However, a key limitation of these devices is that they do not involve natural mechanisms of speech production
and therefore can be less intuitive as substitutes for the human vocal system. Consequently, they can suffer from
lexical ambiguity, lack of emotional expression, and difficulty in conveying intent. There remains an unmet need
to restore the natural mechanisms of speech production for the vocally impaired. To meet this need, we propose
to develop a first-of-its-kind AAC system that restores personalized, prosodic, near real-time vocalization based
on surface electromyographic (sEMG) signals produced during subvocal (i.e., silently mouthed) speech. In Phase
I, we demonstrated the ability to recognize orthographic content and categorize emphatic stress between phrases
subvocalized by (n=4) control and (n=4) post-laryngectomy participants with a 96.3% word recognition rate and
91.2% emphatic stress discrimination rate, respectively. Subvocal speech corpus transcripts were synthesized
into prosodic speech using personalized, digital voices unique to each participant, then evaluated by naïve
listeners (n=12). Listeners consistently rated our sEMG-based digital voice as having greater intelligibility,
acceptability, emphasis discriminability and vocal affinity than the state-of-the-art electrolarynx (EL) speech aid
used by laryngectomees. Having achieved these capabilities with lengthy post-processing of single phrases, we
now aim to advance this technology in Phase II by solving the more fundamental challenges of transcribing
prosodic speech and tracking variations in intonation and timing in near-real-time to restore conversational
interactions in everyday life. To achieve this goal, our team of engineers at Altec Inc. is partnering with the
world’s leading provider of personalized digitized voice for AAC (VocaliD, Inc), and world-class laryngeal
cancer clinical experts (Massachusetts General Hospital) to develop algorithms for transcribing prosodic speech
and tracking variations in intonation and timing throughout narratives, monologues and conversations (Aim 1);
design MyoVoice™ system for near real-time mobile use (Aim 2); and evaluate the prototype system for
conversational efficacy (Aim 3). Our milestone is to demonstrate within-subject improvements in ease-of-use,
functional efficacy, and social reception amongst post-laryngectomy participants using our sEMG-based digital
voice when compared to their typical EL speech aid. The final deliverable will consist of a single 4-contact sensor
veneer and cross-platform, near-real-time mobile software that can operate on an AAC tablet or mobile device.
Once commercialized, our vision for the future of this device is for a person—who is facing the devastating need
to undergo laryngectomy—to have their voice banked and subvocal models trained such that immediately
following surgery, they can receive a custom MyoVoice™ system to restore their original voice.
将近750万人生活,没有能力有效发声。现有的增强性和替代方案
通信(AAC)技术为这些人提供了一些功能,通常通过转换
物理手势,眼动或文本成像可以合成或视觉上显示的单词。
但是,这些设备的关键限制是它们不涉及语音生产的自然机制
因此,作为人声系统的替代品可能不太直观。因此,他们可能遭受
词汇歧义,缺乏情感表达,并且在传达意图方面很难。仍然有未满足的需求
恢复声音受损的语音产生的自然机制。为了满足这种需求,我们提出
开发首个AAC系统,该系统恢复个性化的,韵律的,接近实时发声
在亚次肌电肌电图(SEMG)信号上,在次频(即默默嘴巴)语音中产生的信号。在阶段
i,我们证明了能够识别拼字法内容并分类短语之间强调的能力
通过(n = 4)对照和(n = 4)诊断后参与者的子评估,单词识别率为96.3%
91.2%强调应力歧视率。综合了副语音语料库成绩单
使用每个参与独特的个性化的数字声音进入韵律语音,然后由幼稚评估
听众(n = 12)。听众始终将我们的基于SEMG的数字语音评为更高的清晰度,
可接受性,强调可区分性和声音亲和力比最先进的exterolarynx(EL)语音辅助
由喉头瘤使用。通过冗长的单词后处理,我们实现了这些功能,我们
现在,通过解决抄写更根本的挑战,以在第二阶段推进这项技术
韵律的语音和跟踪在近实时的语调和时间上的变化,以恢复对话
日常生活中的互动。为了实现这一目标,我们的Altec Inc.工程师团队正在与
全球领先的AAC个性化数字化声音提供商(Vocalid,Inc)和世界一流的喉部
癌症临床专家(马萨诸塞州总医院)开发用于转录韵律语音的算法
并在整个叙事,独白和对话中跟踪语调和时间的变化(AIM 1);
设计用于接近实时移动使用的Myovoice™系统(AIM 2);并评估原型系统
会话效率(AIM 3)。我们的里程碑是证明易用性的受试者内部改进,
使用我们的基于SEMG的数字
与典型的EL语音辅助相比,声音。最终输送将由一个4接触传感器组成
单板和跨平台,近实时的移动软件,可以在AAC平板电脑或移动设备上运行。
一旦商业化,我们对该设备未来的愿景就是一个人面临毁灭性需求的人
要进行喉切除术,以训练他们的声音和次数训练,以便立即
手术后,他们可以收到一个自定义的Myovoice™系统来恢复原始声音。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca De Luca其他文献
Gianluca De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca De Luca', 18)}}的其他基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 50.63万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9321913 - 财政年份:2015
- 资助金额:
$ 50.63万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9046217 - 财政年份:2015
- 资助金额:
$ 50.63万 - 项目类别:
Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
- 批准号:
9130174 - 财政年份:2015
- 资助金额:
$ 50.63万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8734495 - 财政年份:2013
- 资助金额:
$ 50.63万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8521782 - 财政年份:2013
- 资助金额:
$ 50.63万 - 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
- 批准号:
8392830 - 财政年份:2012
- 资助金额:
$ 50.63万 - 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
- 批准号:
8978255 - 财政年份:2012
- 资助金额:
$ 50.63万 - 项目类别:
相似国自然基金
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 50.63万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 50.63万 - 项目类别:
Multiplex analysis of IgA and IgG antibody responses to early childhood malaria infections to inform vaccine development
对儿童早期疟疾感染的 IgA 和 IgG 抗体反应进行多重分析,为疫苗开发提供信息
- 批准号:
10647960 - 财政年份:2023
- 资助金额:
$ 50.63万 - 项目类别:
Development and application of a quantitive model for HIV-1 transcriptional activation driven by TAR RNA conformational dynamics
TAR RNA构象动力学驱动的HIV-1转录激活定量模型的开发和应用
- 批准号:
10750552 - 财政年份:2023
- 资助金额:
$ 50.63万 - 项目类别: