Imaging the functional anatomy of fascicles in the mammalian vagus nerve with neural tracers, electrophysiology and Electrical Impedance Tomography.

利用神经示踪剂、电生理学和电阻抗断层扫描对哺乳动物迷走神经束的功能解剖进行成像。

基本信息

  • 批准号:
    MR/R01213X/1
  • 负责人:
  • 金额:
    $ 126.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Over the past two decades, electrical stimulation of the nervous system has progressed from an academic research exercise into mainstream medical use. Implanted stimulators in the brain are now used to treat movement disorders and Parkinson's disease; electrical stimulation of the vagus nerve in the neck has been successfully used in reducing the frequency of epileptic seizures. Nerves in the body may be broadly divided into those that supply muscles and sensation in the limbs - "somatic nerves", and the "autonomic" nervous system when nerves supply bodily organs such as the heart, lungs and liver. There is currently great interest in extending the concept of electrical stimulation to treating diseases related to the autonomic nervous system such as diabetes mellitus or rheumatoid arthritis. A convenient autonomic target is the vagus nerve in the neck because it is easily accessible and a small implanted chip could be used to control about a dozen different supplied organs in the chest and abdomen. At the moment, stimulator technology is only available which would activate or suppress the entire nerve to which it is attached. For a nerve like the vagus nerve, this is unfortunate, as organs other than that intended may be stimulated. An example of this is that when patients with epilepsy have vagus nerve stimulation, they become hoarse, because nerves to the vocal cords are inadvertently stimulated.Nerves are organised into internal bundles, termed "fascicles". The organisation of fascicles is well studied for the somatic nervous system but it is almost completely unknown for the vagus and other autonomic nerves. In order to be able to stimulate an organ selectively within the vagus nerve in the future, it is essential to understand how these fascicles are arranged within the nerve, and what their function is. For example, it is not known if any one fascicle within the vagus nerve in the neck supplies an individual organ, or whether these are all mixed together. If they are mixed together, then it will not be possible to stimulate an individual organ with a stimulator in the neck.The purpose of this project will be to investigate the function and anatomy of the fascicles in the vagus nerve in the neck in humans. The anatomy will be studied with specialised dyes (neural tracers) which can be applied to a nerve and then travel up the nerve so that their connection all the way up to the brain is evident on inspection with a microscope. Secondly, the anatomical connection will be studied with a method in which the entire vagus nerve from the neck to its end organ will be cut into fine slices, inspected under a microscope, and a computer will be used to track all the fascicles within the nerve over its entire course. This approach will, for the first time, identify which fascicles in the cervical vagus nerve in the neck are connected to which end organs. Their electrical function may be studied using a fine array of small spike electrodes which can be inserted into the nerve or a new method, fast neural electrical impedance tomography (EIT). It enables production of images of fascicles in the nerve firing and is the only of these four techniques suitable for human use. It requires surgical placement of a flexible rubber cuff around the vagus nerve. This is ethical and practical in patients with epilepsy in whom the vagus nerve in the neck is exposed for insertion of a vagus nerve stimulator.Studies will be initially undertaken in anaesthetised animals with all four methods. The findings from this will be used to inform a final study in human subjects using fast neural EIT. The output of this work will be, for the first time, an atlas of the anatomy and function of the vagus nerve throughout its course. This will provide a unique platform for efforts in the future where the vagus nerve will be stimulated to treat diseases and it will be beneficial to stimulate selected organs in order to avoid side effects.
在过去的二十年里,神经系统的电刺激已经从学术研究活动发展成为主流医疗用途。植入大脑的刺激器现在用于治疗运动障碍和帕金森氏病;电刺激颈部迷走神经已成功地用于减少癫痫发作的频率。身体中的神经可大致分为供应四肢中的肌肉和感觉的神经-“躯体神经”,以及当神经供应身体器官如心脏、肺和肝脏时的“自主”神经系统。目前,人们对将电刺激的概念扩展到治疗与自主神经系统相关的疾病(例如糖尿病或类风湿性关节炎)非常感兴趣。一个方便的自主目标是颈部的迷走神经,因为它很容易接近,一个小的植入芯片可以用来控制胸部和腹部的十几个不同的供应器官。目前,刺激器技术只能激活或抑制它所连接的整个神经。对于像迷走神经这样的神经来说,这是不幸的,因为可能会刺激其他器官。一个例子是,当癫痫患者接受迷走神经刺激时,他们会变得嘶哑,因为声带的神经被无意中刺激。神经被组织成内部束,称为“束”。对于躯体神经系统,神经束的组织已得到充分研究,但对于迷走神经和其他自主神经,神经束的组织几乎完全未知。为了将来能够选择性地刺激迷走神经内的器官,必须了解这些神经束在神经内的排列方式以及它们的功能。例如,不知道颈部迷走神经内的任何一个分支是否供应单个器官,或者这些分支是否混合在一起。如果它们混合在一起,那么就不可能用颈部的刺激器刺激单个器官。本项目的目的是研究人类颈部迷走神经中的神经束的功能和解剖。解剖学将使用专门的染料(神经示踪剂)进行研究,这些染料可以应用于神经,然后沿着神经向上移动,以便在显微镜下检查时可以明显地看到它们与大脑的连接。第二,解剖学连接将通过一种方法进行研究,其中从颈部到其末端器官的整个迷走神经将被切成精细切片,在显微镜下检查,并且计算机将用于跟踪神经内的所有神经束在其整个过程中。这种方法将首次确定颈部迷走神经中的哪些神经束与哪些终末器官相连。它们的电功能可以使用可以插入神经的小尖峰电极的精细阵列或一种新方法来研究,快速神经电阻抗断层扫描(EIT)。它能够在神经放电中产生神经束的图像,并且是这四种技术中唯一适合人类使用的技术。它需要在迷走神经周围放置一个灵活的橡胶套。这对于暴露颈部迷走神经以插入迷走神经刺激器的癫痫患者来说是符合伦理和实用的。研究将首先在麻醉动物中使用所有四种方法进行。这一发现将用于使用快速神经EIT在人类受试者中进行的最终研究。这项工作的成果将是,第一次,在整个过程中迷走神经的解剖和功能的地图集。这将为未来的努力提供一个独特的平台,其中迷走神经将被刺激以治疗疾病,并且刺激选定的器官以避免副作用将是有益的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective Neuromodulation of the Vagus Nerve.
迷走神经的选择性神经调节。
  • DOI:
    10.3389/fnins.2021.685872
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Fitchett A;Mastitskaya S;Aristovich K
  • 通讯作者:
    Aristovich K
Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease.
  • DOI:
    10.3389/fnins.2021.667036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Mastitskaya S;Thompson N;Holder D
  • 通讯作者:
    Holder D
Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography.
通过快速神经电阻抗断层扫描优化周围神经束状复合动作电位成像的电极驱动模式。
  • DOI:
    10.1088/1361-6579/ab54eb
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ravagli E
  • 通讯作者:
    Ravagli E
Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal.
  • DOI:
    10.1016/j.brs.2020.11.010
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Booth LC;Yao ST;Korsak A;Farmer DGS;Hood SG;McCormick D;Boesley Q;Connelly AA;McDougall SJ;Korim WS;Guild SJ;Mastitskaya S;Le P;Teschemacher AG;Kasparov S;Ackland GL;Malpas SC;McAllen RM;Allen AM;May CN;Gourine AV
  • 通讯作者:
    Gourine AV
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Holder其他文献

Valedictory editorial from the Chairman of the IFMBE Journal Committee on the occasion of a change of Editors
Micro-laparoscopy with Conscious Sedation for the Evaluation of Suspected Pid in Adolescents: A Preliminary Report
  • DOI:
    10.1016/s1083-3188(97)70219-5
  • 发表时间:
    1997-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jessica A. Kahn;Vincent Chiang;Lydia A. Shrier;David Holder;S. Jean Emans;Robert DuRant;Steven J. Fishman;Marc R. Laufer
  • 通讯作者:
    Marc R. Laufer
Electrical Impedance Tomography : Methods, History and Applications
  • DOI:
    10.1201/9781420034462
  • 发表时间:
    2004-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Holder
  • 通讯作者:
    David Holder
Human vagus nerve fascicular anatomy: a microCT segmentation and histological study
人类迷走神经束解剖:显微 CT 分割和组织学研究
  • DOI:
    10.1101/2023.07.04.547643
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicole Thompson;Svetlana Mastitskaya;F. Iacoviello;P. Shearing;K. Aristovich;David Holder
  • 通讯作者:
    David Holder
BS1 Electrical impedance tomography of brain function
  • DOI:
    10.1016/j.clinph.2006.07.088
  • 发表时间:
    2006-09
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    David Holder
  • 通讯作者:
    David Holder

David Holder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Holder', 18)}}的其他基金

MICA: Early thrombolytic intervention in acute stroke by imaging with Electrical Impedance Tomography
MICA:通过电阻抗断层扫描成像对急性中风进行早期溶栓干预
  • 批准号:
    MR/K00767X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 126.38万
  • 项目类别:
    Research Grant

相似国自然基金

Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
  • 批准号:
    82371873
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
  • 批准号:
    82372160
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
  • 批准号:
    82371213
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hyperpolarized 13C Metabolic Imaging of Tumorigenesis in the Liver
肝脏肿瘤发生的超极化 13C 代谢成像
  • 批准号:
    10727760
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
New Classes of Electron Paramagnetic Resonance Imaging Probes With High-Spin Metal Complexes
具有高自旋金属配合物的新型电子顺磁共振成像探针
  • 批准号:
    10712009
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
  • 批准号:
    10718346
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
  • 批准号:
    10664783
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
  • 批准号:
    10715163
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
  • 批准号:
    10711521
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
  • 批准号:
    10752459
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Precision brain charts for imaging-genomics of schizophrenia and the psychosis spectrum
用于精神分裂症和精神病谱系成像基因组学的精确脑图
  • 批准号:
    10717605
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
Imaging progressive circuit reorganization after traumatic brain injury
脑外伤后进行性回路重组的成像
  • 批准号:
    10678271
  • 财政年份:
    2023
  • 资助金额:
    $ 126.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了