Novel methods for the integration of high dimensional single cell proteomic and RNA data to understand cell populations in development and disease.

整合高维单细胞蛋白质组和 RNA 数据以了解发育和疾病中的细胞群的新方法。

基本信息

  • 批准号:
    MR/S005471/1
  • 负责人:
  • 金额:
    $ 42.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Each individual person started out as one single cell but an adult is made up of more than 30 trillion cells. These cells have been organized into complex tissues that work together to produce functioning organisms. Recent technological breakthroughs have allowed scientists to analyse the behaviour of millions of cells in order to better understand normal cell behaviour and how it is altered in disease. In order to achieve this, we will need to incorporate data from multiple techniques into statistical models, something that is technically quite challenging. My experience as a bioinformatician dealing with these complex datasets puts me in a perfect position to understand how to accomplish this. In my project, I aim to integrate data from single cell transcriptomics and proteomics; one studying the intermediate state of gene transcription from our genetic code and the other the resulting protein levels. Being able to use the available information from both technologies will undoubtedly help us better understand cell function in health and disease. However, currently, there are no methodological tools trying to accomplish this. I will use cutting edge single cell data generated by labs here at the MRC WIMM of the University of Oxford to produce models of cellular behaviour. This approach could be applicable to various biological fields, including: immunologists with an interest in understanding the relationship between immune cells and the tissues they infiltrate; haematologists aiming to understand the cellular environment in blood diseases; and oncology groups wishing to understand cellular organisation in tumours. Moreover, I will develop a visualisation tool to help visualise and interpret these models. The tools I develop will be made available to the wider scientific community to help them answer questions for a broad range of biological problems.
每个人最初都是一个细胞,但成年人是由超过30万亿个细胞组成的。这些细胞被组织成复杂的组织,共同工作以产生功能性生物体。最近的技术突破使科学家能够分析数百万个细胞的行为,以便更好地了解正常细胞行为以及疾病如何改变。为了实现这一目标,我们需要将来自多种技术的数据整合到统计模型中,这在技术上是相当具有挑战性的。我作为一名生物信息学家处理这些复杂数据集的经验使我处于一个完美的位置,了解如何实现这一目标。在我的项目中,我的目标是整合来自单细胞转录组学和蛋白质组学的数据;一个研究我们遗传密码中基因转录的中间状态,另一个研究由此产生的蛋白质水平。能够利用这两种技术提供的信息无疑将有助于我们更好地了解健康和疾病中的细胞功能。然而,目前还没有方法论工具试图实现这一目标。我将使用牛津大学MRC WIMM实验室产生的最先进的单细胞数据来制作细胞行为模型。这种方法可以适用于各种生物学领域,包括:免疫学家有兴趣了解免疫细胞和它们浸润的组织之间的关系;血液学家旨在了解血液疾病中的细胞环境;肿瘤学团体希望了解肿瘤中的细胞组织。此外,我将开发一个可视化工具来帮助可视化和解释这些模型。我开发的工具将提供给更广泛的科学界,以帮助他们回答广泛的生物学问题。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of single-cell RNA-Seq and CyTOF data characterises heterogeneity of rare cell subpopulations
  • DOI:
    10.12688/f1000research.121829.1
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Repapi;D. Agarwal;G. Napolitani;David Sims;Stephen S. Taylor
  • 通讯作者:
    E. Repapi;D. Agarwal;G. Napolitani;David Sims;Stephen S. Taylor
Supplementary Figures and Table for Repapi et al. 2022
Repapi 等人的补充数据和表格。
  • DOI:
    10.5281/zenodo.6513603
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Repapi E
  • 通讯作者:
    Repapi E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanouela Repapi其他文献

Pathways regulating the endothelial-to-hematopoietic transition
  • DOI:
    10.1016/j.exphem.2016.06.019
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marella de Bruijn;Lucas Greder;Gemma Swiers;Emmanouela Repapi;Stella Antoniou;Emanuele Azzoni;Nicki Gray;Stephen Taylor
  • 通讯作者:
    Stephen Taylor
2018 – RECONSTRUCTION OF A DORSAL AORTA HEMOGENIC ENDOTHELIUM GENE REGULATORY NETWORK IDENTIFIES A RUNX1:IKZF1:NOTCH FEED-FORWARD LOOP
  • DOI:
    10.1016/j.exphem.2021.12.383
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joe Harman;Lucas Greder;Gemma Swiers;Dominic Owens;Maria Suciu;Damien Downes;Jelena Telenius;Vincent Frontera;Stella Antoniou;Emmanouela Repapi;Emanuele Azzoni;Marella de Bruijn
  • 通讯作者:
    Marella de Bruijn
Single cell assays unveil functional and transcriptional heterogeneity of human hemopoietic lympho-myeloid progenitors
  • DOI:
    10.1016/j.exphem.2017.06.074
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bilyana Stoilova;Dimitris Karamitros;Zahra Aboukhalil;Andreas Reinisch;Fiona Hamey;Marina Samitsch;Lynn Quek;Georg Otto;Emmanouela Repapi;Jessica Doondeea;Batchimeg Usukhbayar;Julien Calvo;Stephen Taylor;Nicolas Goardon;Emmanuelle Six;Francoise Pflumio;Catherine Porcher;Ravindra Majeti;Berthold Gottgens;Paresh Vyas
  • 通讯作者:
    Paresh Vyas
SCL establishes a transcriptional and epigenetic repressive environment in blood-fated cells to suppress alternative mesodermal lineages
  • DOI:
    10.1016/j.exphem.2016.06.057
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Catherine Porcher;Hedia Chagraoui;Maiken Kristiansen;Johanna Richter;Nicki Gray;Emmanouela Repapi;Stephen Taylor;Paresh Vyas
  • 通讯作者:
    Paresh Vyas

Emmanouela Repapi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Target Insertion Amplification and Sequence (TIAS): A novel targeted sequencing technology that performs rapid target enrichment and next generation sequencing sample preparation simultaneously
靶标插入扩增和测序(TIAS):一种新颖的靶向测序技术,可同时进行快速靶标富集和下一代测序样品制备
  • 批准号:
    10758909
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Developing a novel system combining cognitive assessment with PASCALL FDA-cleared intraoperative anesthesia EEG brain monitor to prevent postoperative neurocognitive disorders in aging patients
开发一种将认知评估与 FDA 批准的 PASCALL 术中麻醉脑电图脑监测仪相结合的新型系统,以预防老年患者术后神经认知障碍
  • 批准号:
    10760816
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Novel bioinformatics methods for integrative detection of structural variants from long-read sequencing
用于从长读长测序中综合检测结构变异的新型生物信息学方法
  • 批准号:
    10752265
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Novel use of mobile phone big data to evaluate the effect of climatic and non-climatic shocks on human mobility and women's health outcomes in sub-Saharan Africa
新颖地利用手机大数据来评估气候和非气候冲击对撒哈拉以南非洲地区人口流动和妇女健康结果的影响
  • 批准号:
    10722580
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Identification of regulatory mechanisms operating in rare pathogenic astrocyte subsets in multiple sclerosis with a novel genomic technology
利用新型基因组技术鉴定多发性硬化症中罕见致病性星形胶质细胞亚群的调节机制
  • 批准号:
    10737509
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
Novel Methods for Rotorcraft Engine Propulsion Integration
旋翼机发动机推进集成的新方法
  • 批准号:
    2833798
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
    Studentship
Leveraging GWAS Findings to Map Variants and Identify Novel Effector Genes for Alcohol-Related Traits
利用 GWAS 研究结果绘制变异图谱并识别酒精相关特征的新效应基因
  • 批准号:
    10657933
  • 财政年份:
    2023
  • 资助金额:
    $ 42.68万
  • 项目类别:
A novel framework for estimating personalized genomic variants of hypertension for precision medicine
用于估计高血压个性化基因组变异以实现精准医疗的新框架
  • 批准号:
    10685475
  • 财政年份:
    2022
  • 资助金额:
    $ 42.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了